На силе трения поверхностей поэтому. Конспект урока "силы трения между соприкасающимися поверхностями твердых тел". Виды внешнего трения

Бани, сауны 21.11.2023

Трение возникает на поверхностях соприкосновения двух твердых тел. Оно играет важную роль и в технике, и в обыденной жизни. Различают три вида внешнего трения: трение покоя, трение скольжения, трение качения . На величину сил трения и характер их зависимости от скорости существенно влияют состояние поверхностей, их обработка, наличие загрязнений и т.д. Вместе с тем величина этих сил зависит от величины нормального давления между поверхностями. Сила трения между соприкасающимися твердыми телами обладает характерной чертой: она не обращается в нуль вместе со скоростью. Сила трения, которая существует между соприкасающимися, но не движущимися телами, носит название трения покоя . Величина и направление силы трения покоя определяются величиной и направлением той внешней силы, которая должна была бы вызвать скольжение. Сила трения покоя равна по величине и противоположна по направлению внешней силе, вызвавшей движение. Сила трения покоя по величине не может превосходить некоторого определенного значения, которое называют максимальной силой трения покоя (или силой трения покоя). Пока внешняя сила не превосходит этого значения, скольжение не возникает (рис. 6.1). За максимальным значением следует крутой спад и остается постоянная сила трения скольжения .

Трение покоя и трение скольжения не зависят от величины площади соприкосновения твердых тел. Для данных тел силы трения покоя и скольжения прямо пропорциональны силе давления N , которая одновременно сжимает оба тела:

, , (6.1)

где и – коэффициенты трения покоя и скольжения. Величина в большинстве случаев изменяется в пределах от 0.2 до 0.7; – от 0.2 до 0.5.

Трение покоя играет в технике существенную роль. Оно определяет наибольшую величину необходимой движущей силы для ведущих колес автомобилей, а также для подошв пешеходов. В месте соприкосновения с землей катящееся колесо и подошва ноги движущегося человека находятся в покое относительно земли. Поэтому здесь действует трение покоя. Трение скольжения, наоборот, почти всегда мешает, поэтому в машинах и аппаратах стремятся по возможности исключить внешнее трение между трущимися частями. Его заменяют внутренним трением тонких слоев жидкости между взаимно движущимися частями – это называется смазкой.

Между поверхностями соприкасающихся твердых тел.
Трение покоя. Попробуйте сдвинуть пальцем лежащую на столе толстую книгу. Книга будет оставаться на месте до тех пор, пока действующая на нее сила не достигнет определенного значения. Факт этот совершенно привычный, но, если вдуматься, достаточно странный и непонятный.
Ведь что это значит? Вы приложили к книге некоторую силу, направленную, скажем, вдоль поверхности стола, а книга остается в покое. Следовательно, между книгой и поверхностью стола возникает сила, направленная против той силы, с которой вы действуете на книгу, и в точности равная ей по модулю. Вы с большей силой толкаете книгу, но она по-прежнему остается на месте. Значит, и сила трения настолько же возрастает.
Силу трения, действующую между двумя телами, неподвижными относительно друг друга, называют силой трения покоя .
Если на тело действует сила , параллельная поверхности, на которой оно находится и тело при этом остается неподвижным, то это означает, что на него действует сила трения покоя F тр , равная по модулю и направленная в противоположную сторону силе (рис.4.14 ). Следовательно, сила трения покоя определяется действующей на него силой

Иначе говоря, когда ускорение тела равно нулю, сила трения равна по модулю и противоположна по направлению той силе, которая наряду с трением действует на тело параллельно поверхности его соприкосновения с другим телом. Если параллельно этой поверхности другие силы не действуют, то трение покоя будет равно нулю.
Наибольшее значение силы трения, при котором скольжение еще не наступает, называется максимальной силой трения покоя . Если действующая на покоящееся тело сила хотя бы немного превысит максимальную силу трения покоя, то тело начнет скользить.
Для определения максимальной силы трения покоя существует весьма простой, но не очень точный количественный закон. Нагрузим брусок гирей (рис.4.15 ) того же веса, что и сам брусок. При этом сила , с которой брусок действует на стол перпендикулярно поверхности стола, увеличится в 2 раза. Но сила согласно третьему закону Ньютона равна по модулю и противоположна по направлению силе нормальной реакции опоры , действующей на брусок со стороны стола. Следовательно, и сила увеличится в 2 раза. Если мы теперь снова измерим максимальную силу трения покоя, то увидим, что она увеличилась во столько раз, во сколько раз увеличилась сила , т. е. в 2 раза.

Нагружая брусок различными гирями и измеряя каждый раз максимальную силу трения покоя, мы убедимся в том, что максимальное значение модуля силы трения покоя пропорционально модулю силы нормальной реакции опоры . Этот закон впервые установил экспериментально французский физик Кулон.
Если обозначить модуль максимальной силы трения покоя через F тр.макс , то можно записать:

где µ - коэффициент пропорциональности, называемый коэффициентом трения покоя. Коэффициент трения характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки. Коэффициент трения определяется экспериментально.
От площади соприкосновения тел максимальная сила трения покоя не зависит. Если положить брусок на меньшую грань, то F тр.макс не изменится.
Сила трения покоя меняется в пределах от нуля до максимального значения, равного . За счет чего может происходить изменение силы трения?
Дело здесь вот в чем. При действии на тело некоторой силы оно слегка (незаметно для глаза) смещается, и это смещение продолжается до тех пор, пока микроскопические шероховатости поверхностей не расположатся относительно друг друга так, что, зацепляясь одна за другую, они приведут к появлению силы, уравновешивающей силу . При увеличении силы тело опять чуть-чуть сдвинется так, что мельчайшие неровности поверхностей по-иному будут цепляться друг за друга, и сила трения возрастет. И лишь при F тр.макс ни при каком взаимном расположении шероховатостей поверхности сила трения не в состоянии уравновесить силу , и начнется скольжение.
При ходьбе и беге на подошвы ног действует сила трения покоя, если только ноги не скользят. Такая же сила действует на ведущие колеса автомобиля. На ведомые колеса также действует сила трения покоя, но уже тормозящая движение, причем эта сила значительно меньше силы, действующей на ведущие колеса (иначе автомобиль не смог бы тронуться с места).
В давнее время, когда не очень хорошо представляли себе способность силы трения покоя принимать различные значения, сомневались, что паровоз сможет ехать по гладким рельсам. Думали, что трение, тормозящее ведомые колеса, будет равно силе трения, действующей на ведущие колеса. Предлагали даже делать ведущие колеса зубчатыми и прокладывать для них специальные зубчатые рельсы.
Трение скольжения. При скольжении сила трения зависит не только от состояния трущихся поверхностей, но и от относительной скорости движения тел, причем эта зависимость от скорости является довольно сложной. Опыт показывает, что часто (хотя и не всегда) в самом начале скольжения, когда относительная скорость еще мала, сила трения становится несколько меньше максимальной силы трения покоя. Лишь затем, по мере увеличения скорости, она растет и начинает превосходить F тр.макс .
Вы, вероятно, замечали, что тяжелый предмет, например ящик, трудно сдвинуть с места, а потом двигать его становится легче. Это как раз и объясняется уменьшением силы трения при появлении скольжения с малой скоростью.
Зависимость модуля силы трения скольжения от модуля относительной скорости тел показана на рисунке 4.16.

При не слишком больших относительных скоростях движения сила трения скольжения мало отличается от максимальной силы трения покоя. Поэтому приближенно можно считать ее постоянной и равной максимальной силе трения покоя:

Важная особенность силы трения скольжения состоит в том, что она всегда направлена противоположно относительной скорости соприкасающихся тел.
Силу трения скольжения можно уменьшить во много раз с помощью смазки - чаще всего тонкого слоя жидкости (обычно того или иного сорта минерального масла) - между трущимися поверхностями. Трение между слоями жидкости, прилегающими к твердым поверхностям, значительно меньше, чем между сухими поверхностями. Ни одна современная машина, например двигатель автомобиля или трактора, не может работать без смазки. Специальная система смазки предусматривается при конструировании всех машин.
Сила трения зависит от относительной скорости движения тел. В этом ее главное отличие от сил тяготения и упругости, зависящих только от расстояний.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Цель : Закрепить полученные знания о трении и о видах трения.

Ход работы:

1. Изучить теоретическую часть
2. Заполнить таблицу 1.
3. Решить задачу по варианту из таблицы 2.
4. Ответить на контрольные вопросы.

Таблица 1

Таблица 2

Конькобежец проезжает по гладкой горизонтальной поверхности льда по инерции 80 м. Определить силу трения и начальную скорость, если масса конькобежца 60 кг, а коэффициент трения 0,015

Тело массой 4,9 кг лежит на горизонтальной плоскости. Какую силу надо приложить к телу в горизонтальном направлении, чтобы сообщить ему ускорение 0,5 м/с 2 при коэффициенте трения 0,1?

На горизонтальном столе лежит деревянный брусок массой 500 г, который приводится в движение грузом массой 300 г, подвешенным на вертикальном конце нити, перекинутой через блок, закрепленный на конце стола. Коэффициент трения при движении бруска равен 0,2. С каким ускорением будет двигаться брусок?

Сила трения - это сила, возникающая между поверхностями соприкасающихся тел. Если между поверхностями отсутствует смазка, то трение называется сухим. Сила сухого трения прямо пропорциональна силе, прижимающей поверхности друг к другу и направлена в сторону, противоположную возможному движению. Коэффициент пропорциональности называется коэффициентом трения. Прижимающая сила перпендикулярна поверхности. Она называется нормальной реакцией опоры.

Законы трения в жидкостях и газах отличаются от законов сухого трения. Трение в жидкости и газе зависит от скорости движения: при малых скоростях оно пропорциональной квадрату, а при больших - кубу скорости.

Формулы для решения:

Где "k" - коэффициент трения, "N" - нормальная реакция опоры.

Второй закон Ньютона и уравнения движения в векторной форме. F = ma

По третьему закону Ньютона N = - mg

выражение для скорости

Уравнения движения для равноускоренного кинематического движения

; 0 - V = a t где 0 – конечная скорость V – начальная скорость

Алгоритм решения типовой задачи:

1. Кратко записываем условие задачи.

2. Изображаем условие графически в произвольной системе отсчета, указав действующие на тело (точку) силы, в том числе, нормальную реакцию опоры и силу трения, скорость и ускорение тела.

3. Корректируем и обозначаем на рисунке систему отсчета, вводя начало отсчета времени и уточняя оси координат для сил и ускорения. Лучше направить одну из осей вдоль нормальной реакции опоры, а отсчет времени начать в момент нахождения тела (точки) в нуле координат.

4. Записываем в векторной форме второй закон Ньютона и уравнения движения. Уравнения движения и скорости - это зависимости перемещения (пути) и скорости от времени.

5. Записываем в эти же уравнения в скалярной форме: в проекциях на оси координат. Записываем выражение для силы трения.

6. Решаем уравнения в общем виде.

7. Подставляем величины в общее решение, вычисляем.

8. Записываем ответ.

Теоретическая часть
Трением называется сопротивление соприкасающихся тел движению друг относительно друга. Трением сопровождается каждое механическое движение, и это обстоятельство имеет существенное следствие в современном техническом прогрессе.
Сила трения есть сила сопротивления движению соприкасающихся тел друг относительно друга.Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.Тела, перемещающиеся с трением друг относительно друга, должны соприкасаться поверхностями или двигаться одно в среде другого. Движения тел друг относительно друга может и не возникнуть из-за наличия трения, если движущая сила меньше максимальной силы трения покоя. Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Рассмотрим более детально процесс возникновения сил трения скольжения и покоя на стыке двух соприкасающихся тел. Если посмотреть на поверхности тел под микроскопом, то будут видны микронеровности, которые мы изобразим в увеличенном виде (рис. 1, а).Рассмотрим взаимодействие соприкасающихся тел на примере одной пары неровностей (гребень и впадина) (рис. 3, б). В случае, когда сила, пытающаяся вызвать движение, отсутствует, характер взаимодействия на обоих склонах микронеровностей аналогичный. При таком характере взаимодействия все горизонтальные составляющие силы взаимодействия уравновешивают друг друга, а все вертикальные про суммируются и составляют силу N (реакция опоры) (рис. 2, а).

Иная картина взаимодействия тел получается, когда на одно из тел начинает действовать сила. В этом случае точки контакта будут преимущественно на левых по рисунку «склонах». Первое тело будет давить на второе. Интенсивность этого давления характеризуется силой R". Второе тело в соответствии с третьим законом Ньютона будет действовать на первое тело. Интенсивность этого действия характеризуется силой R (реакция опоры). Силу R

можно разложить на составляющие: силу N, направленную перпендикулярно поверхности соприкосновения тел, и силу Fсц, направленную против действия силы F (рис. 2, б).


После рассмотрения взаимодействия тел следует обратить внимание на два момента.
1) При взаимодействии двух тел в соответствии с третьим законом Ньютона возникают две силы R и R"; силу R для удобства ее учета при решении задач мы раскладываем на составляющие N и Fсц (Fтр в случае движения).
2) Силы N и F Tp имеют одну и ту же природу (электромагнитное взаимодействие); иначе и быть не могло, так как это составляющие одной и той же силы R.
Весьма важное значение в современной технике для снижения вредного влияния сил трения имеет замена трения скольжения трением качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:


где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.
Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины - метрах.
Заменяется трение скольжения трением качения, в необходимых и возможных случаях, заменой подшипников скольжения на подшипники качения.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. Слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.
Виды сил трения.
Силы трения имеют электромагнитную природу, т.е. в основе сил трения лежат электрические силы взаимодействия молекул. Они зависят от скорости движения тел относительно друг друга.
Существует 2 вида трения: сухое и жидкое.
1.Жидкое трение – это сила, возникающая при движении твёрдого тела в жидкости или газе или при движении одного слоя жидкости(газа) относительно другого и тормозящая это движение.

В жидкостях и газах сила трения покоя отсутствует.
При малых скоростях движения в жидкости (газе):
Fтр= k1v,
где k1– коэффициент сопротивления, зависящий от формы, размеров тела и от св-в среды. Определяется опытным путём.

При больших скоростях движения:
Fтр= k2v,
где k2– коэффициент сопротивления.
2.Сухое трение – это сила, возникающая при непосредственном соприкосновении тел, и всегда направлена вдоль поверхностей соприкосновения электромагнитных тел именно разрывом молекулярных связей.
Трение покоя.
Рассмотрим взаимодействие бруска с поверхностью стола.Поверхность, соприкасающихся тел не является абсолютно ровной.Наибольшая сила притяжения возникает между атомами веществ, находящимися на минимальном расстоянии друг от друга, то есть на микроскопических выступах. Суммарная сила притяжения атомов, соприкасающихся тел столь значительна, что даже под действием внешней силы, приложенной к бруску параллельно поверхности его соприкосновения со столом, брусок остаётся в покое. Это означает, что на брусок действует сила равная по модулю внешней силе, но противоположно направленная. Эта сила является силой трения покоя.Когда приложенная сила достигает максимального критического значения, достаточного для разрыва связей между выступами, брусок начинает скользить по столу. Максимальная сила трения покоя не зависит от площади соприкосновения поверхности.По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N.
Максимальная сила трения покоя пропорциональна силе нормального давления:

где μ – коэффициент трения покоя.

Коэффициент трения покоя зависит от характера обработки поверхности и от сочетания материалов, из которых состоят соприкасающиеся тела. Качественная обработка гладких поверхностей контакта приводит к увеличению числа притягивающихся атомов и соответственно к увеличению коэффициента трения покоя.

Максимальное значение силы трения покоя пропорционально модулю силы F д давления, производимого телом на опору.
Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис. 3). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. е.
FН=Fд. Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.
При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. е. уравновешивает ее).
Будем увеличивать угол наклона a до тех пор, пока тело не начнет скользить вниз по наклонной плоскости. В этот момент
Fт=FпmaxИз рис. 3 видно, чтоFт=Fsin = mgsin; Fн=Fcos = mgcos.
получим
fн=sin/cos=tg.
Измерив угол, при котором начинается скольжение тела, можно по формуле вычислить значение коэффициента трения покоя fп.


Рис. 3. Трение покоя.
Трения скольжения

Трение скольжения возникает при относительном перемещении соприкасающихся тел.
Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.
Когда одно тело начинает скользить по поверхности другого тела, связи между атомами (молекулами) первоначально неподвижных тел разрываются, трение уменьшается. При дальнейшем относительном движении тел постоянно образуются новые связи между атомами. При этом сила трения скольжения остаётся постоянной, несколько меньшей силы трения покоя. Как и максимальная сила трения покоя, сила трения скольжения пропорциональна силе нормального давления и, следовательно, силе реакции опоры:
,где - коэффициент трения скольжения (), зависящий от свойств соприкасающихся поверхностей.


Рис. 3. Трение скольжения

Контрольные вопросы

  1. Что такое внешнее и внутреннее трение?
  2. Какое трение называют трением покоя?
  3. что такое сухое и жидкое трение?
  4. Что такое максимальная сила трения покоя?
  5. Как определить значение коэффициента трения покоя?

Сила трения есть сила сопротивления движению соприкасающихся тел друг относительно друга.

Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.

Тела, перемещающиеся с трением друг относительно друга, должны соприкасаться поверхностями или двигаться одно в среде другого. Движения тел друг относительно друга может и не возникнуть из-за наличия трения, если движущая сила меньше максимальной силы трения покоя.

Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Рассмотрим более детально процесс возникновения сил трения скольжения и покоя на стыке двух соприкасающихся тел. Если посмотреть на поверхности тел под микроскопом, то будут видны микронеровности, которые мы изобразим в увеличенном виде (рис. 1, а).

Рассмотрим взаимодействие соприкасающихся тел на примере одной пары неровностей (гребень и впадина) (рис. 3, б). В случае, когда сила, пытающаяся вызвать движение, отсутствует, характер взаимодействия на обоих склонах микронеровностей аналогичный. При таком характере взаимодействия все горизонтальные составляющие силы взаимодействия уравновешивают друг друга, а все вертикальные просуммируются и составляют силу N (реакция опоры) (рис. 2, а).

Иная картина взаимодействия тел получается, когда на одно из тел начинает действовать сила. В этом случае точки контакта будут преимущественно на левых по рисунку «склонах». Первое тело будет давить на второе. Интенсивность этого давления характеризуется силой R". Второе тело в соответствии с третьим законом Ньютона будет действовать на первое тело. Интенсивность этого действия характеризуется силой R (реакция опоры). Силу R можно разложить на составляющие: силу N, направленную перпендикулярно поверхности соприкосновения тел, и силу Fсц, направленную против действия силы F (рис. 2, б).



После рассмотрения взаимодействия тел следует обратить внимание на два момента.

1) При взаимодействии двух тел в соответствии с третьим законом Ньютона возникают две силы R и R"; силу R для удобства ее учета при решении задач мы раскладываем на составляющие N и Fсц (Fтр в случае движения).

2) Силы N и FTp имеют одну и ту же природу (электромагнитное взаимодействие); иначе и быть не могло, так как это составляющие одной и той же силы R.

Весьма важное значение в современной технике для снижения вредного влияния сил трения имеет замена трения скольжения трением качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:

где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.

Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины - метрах.

Заменяется трение скольжения трением качения, в необходимых и возможных случаях, заменой подшипников скольжения на подшипники качения.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. Слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.

Виды сил трения.

Силы трения имеют электромагнитную природу, т.е. в основе сил

трения лежат электрические силы взаимодействия молекул. Они

зависят от скорости движения тел относительно друг друга.

Существует 2 вида трения: сухое и жидкое.

1.Жидкое трение – это сила, возникающая при движении твёрдого

тела в жидкости или газе или при движении одного слоя жидкости

(газа) относительно другого и тормозящая это движение.

В жидкостях и газах сила трения покоя отсутствует.

При малых скоростях движения в жидкости (газе):

где k1– коэффициент сопротивления, зависящий от формы, размеров

тела и от св-в среды. Определяется опытным путём.

При больших скоростях движения:

где k2– коэффициент сопротивления.

2.Сухое трение – это сила, возникающая при непосредственном

соприкосновении тел, и всегда направлена вдоль поверхностей

соприкосновения электромагнитных тел именно разрывом молекулярных связей.

Трение покоя.

Рассмотрим взаимодействие бруска с поверхностью стола.

Поверхность, соприкасающихся тел не является абсолютно ровной.

Наибольшая сила притяжения возникает между атомами веществ, находящимися на минимальном расстоянии друг от друга, то есть на микроскопических выступах. Суммарная сила притяжения атомов, соприкасающихся тел столь значительна, что даже под действием внешней силы

, приложенной к бруску параллельно поверхности его соприкосновения со столом, брусок остаётся в покое. Это означает, что на брусок действует сила равная по модулю внешней силе, но противоположно направленная. Эта сила является силой трения покоя.

Когда приложенная сила достигает максимального критического значения, достаточного для разрыва связей между выступами, брусок начинает скользить по столу.

Максимальная сила трения покоя не зависит от площади соприкосновения поверхности.

По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N.

Максимальная сила трения покоя

пропорциональна силе нормального давления: , – коэффициент трения покоя.

Коэффициент трения покоя зависит от характера обработки поверхности и от сочетания материалов, из которых состоят соприкасающиеся тела. Качественная обработка гладких поверхностей контакта приводит к увеличению числа притягивающихся атомов и соответственно к увеличению коэффициента трения покоя.

Наблюдения показывают, что сила трения покоя всегда направлена противоположно действующей на тело внешней силе, стремящейся привести это тело в движение (

).До определенного момента сила трения покоя увеличивается с возрастанием внешней силы, уравновешивая последнюю. Максимальное значение силы трения покоя пропорционально модулю силы Fд давления, производимого телом на опору.

По третьему закону Ньютона сила Fд давления тела на опору равна по модулю силе N реакции опоры. Поэтому максимальная сила трения покоя пропорциональна силе реакции опоры. Для модулей этих сил справедливо следующее соотношение:

Fп=fпN, (2.19)

где fп - безразмерный коэффициент пропорциональности, называемый коэффициентом трения покоя. Значение этого коэффициента зависит от материала и состояния трущихся поверхностей.

Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис. 23). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. е.

Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.

При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. е. уравновешивает ее).

Лекция 4. Трение твердых тел

Трение внешнее , механическое сопротивление, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Сила сопротивления F тр , направленная противоположно относительно перемещению данного тела, называется силой трения, действующей на это тело. Трение внешнее - диссипативный процесс, сопровождающийся выделением тепла, электризацией тел, их разрушением и т.д.

Различают Трение внешнее скольжения и качения. Трение скольжения - сила, возникающая при поступательном перемещении одного из контактирующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения. Трение качения - момент сил, возникающий при качении одного из двух контактирующих тел относительно другого, препятствующий качению.

Характеристика трения скольжения - коэффициент трения скольжения f c - безразмерная величина, равная отношению силы трения к нормальной нагрузке; характеристикой трения качения является коэффициент трения качения f k - величина, имеющая размерность длины, представляет собой отношение момента трения качения к нормальной нагрузке. Внешние условия (нагрузка, скорость, шероховатость, температура, смазка) влияют на величину Трения внешнего не меньше, чем природа трущихся тел, меняя его в несколько раз.

F с = Fтр. /mg (4.1)

f к = Fтр.кач. R/mg (4.2)

Механизм возникновения трения объясняет молекулярно-механическая теория трения, в разработку которой внесли большой вклад российские ученые (Б.В. Дерягин, И.В. Крагельский и др.) и зарубежные (Боуден, Тейбор, Томлинсон и др.). В соответствии с этой теорией трение имеет двойственную молекулярномеханическую природу. Силу трения F тр можно представить как сумму молекулярной (адгезионной) F а и механической (деформационной) F σ составляющих:

F тр = F а + F σ .

Молекулярная составляющая обусловлена сопротивлением разрыву молекулярных либо межатомных связей, которые возникают между контактирующими телами. Механизм этого процесса аналогичен разрушению кристаллической решетки при сдвиге. Рассеяние работы трения в теплоту связано с упругой деформацией кристаллических решеток. Работа внешней силы переходит в потенциальную энергию решеток. После

разрыва связи потенциальная энергия переходит в энергию колебаний атомов (тепло).

Механическая

составляющая вызвана

сопротивлением

упругому и

пластическому

оттеснению выступов

контактирующих тел, внедрившихся при движении в

контроповерхности (см. рис. 4.1).

В зависимости от условий трения, а также от структуры

тел и межатомных взаимодействий, отдельные компоненты

в выражении

вырастать или

уменьшаться.

Различают

граничное,

гидродинамическое

(жидкостное)

смешанное

Рис 4.1. Упругое и пластическое оттеснение

(одновременно имеются элементы сухого, граничного и

материала при скольжении

гидродинамического трения).

В первом случае контактируют несмазываемые поверхности, покрытые окисными пленками и тончайшими слоями молекул газов и воды, адсорбированными из окружающей среды. В этом случае сила трения складывается из адгезионной и когезионной составляющих. Сухое и граничное трения сходны по своей

природе и имеют общие закономерности. Причиной служит то обстоятельство, что при граничном трении мономолекулярные слои смазки прочно связаны с твердой поверхностью, обладают твердообразными свойствами и как бы служат продолжением твердой фазы. Поэтому, как и при сухом трении, фактически имеет место контакт двух твердых поверхностей. Отличие проявляется в разных значениях коэффициента трения.

Во втором случае, помимо перечисленных пленок, присутствуют молекулы смазочных материалов в виде тонкого слоя толщиной в несколько молекул, которые прочно связаны с поверхностью. Характерным в этом случае является снижение как той, так и другой составляющей.

В третьем случае слой жидкой смазки полностью разделяет сопряженные поверхности. Адгезионная составляющая уменьшается до нуля.

Многочисленные исследования показали, что для металлов деформационная составляющая коэффициента трения примерно в 100 раз меньше, чем адгезионная. Поэтому коэффициент трения в первом приближении равен адгезионной составляющей. Несколько иначе дело обстоит для пластмасс и резин. В последнем случае различие снижается более чем на порядок, и, если резина скользит по грубо обработанной поверхности, деформационной составляющей пренебрегать не следует.

Для измерения силы трения применяют различные трибометры.

На них изучают трение образцов в виде дисков, контактирующих

торцами; цилиндров, контактирующих по образующей, и т.д.

Наиболее простым и часто используемым является трибометр,

схема которого изображена на рис. 4.2. Образец 1 прикрепляется к

пружинному динамометру 3 и прижимается к контртелу 2,

приводимому в движени е.

Динамометр измеряет силу трения. Прибор позволяет исследовать

влияние на трение шероховатости поверхностей, материалов пары

трения, нормальной нагрузки, скорости скольжения, температуры,

смазки и многих других факторов.

Рис. 4.2. Схема трибометра

Определение сил и коэффициентов внешнего трения. При упругих деформациях в зонах касания взаимодействие твердых тел может осуществляться при ненасыщенном и насыщенном контакте.

При упругом ненасыщенном контакте расстояния между отдельными зонами контактирования достаточно велики, так что влиянием зон друг на друга можно пренебречь. Общая сила трения при скольжении абсолютно жесткого тела, обладающего шероховатой поверхностью, относительно более мягкого тела, обладающего абсолютно ровной поверхностью, будет равна

F тр = ∫ F i

dnr ,

где F i – сила трения, возникающая на единичной произвольной микронеровности; n r – число микронеровностей, имеющих одинаковое внедрение.

Для определения силы F i рассмотрим процессы, происходящие в зоне контакта единичной микронеровности (рис. 4.3). Деформационная составляющая силы трения возникает вследствие несовершенной упругости материала деформируемых слоев. Она обусловлена гистерезисными потерями. В соответствии с исследованиями английского ученого Д. Тейбора

деформационная составляющая силы трения равна

F iдеф =

0,25α

− μ 2

где E – модуль упругости деформируемого материала; μ - коэффициент Пуассона этого материала; α гист – коэффициент гистерезисных потерь материала в условиях сложного напряженного состояния.

Рис. 4.3. распределение напряжений при упругих деформациях в зоне контакта шара с плоской поверхностью деформируемого тела

Молекулярная составляющая силы трения обусловлена межатомным и межмолекулярным взаимодействием и равна

Тогда общую силу трения, возникающую при скольжении произвольной микронеровности, можно выразить следующим образом

0,25α

+ (τ 0

+ β Pri )π Rhi

1 − μ 2

Сила трения F тр вычисляется из выражения (4.4), в котором все i -е параметры определяются через известные величины. Если определить

нормальную нагрузку P в зависимости от сближения, то можно вычислить коэффициент трения в зависимости от сближения f =

F тр /P . Расчеты показывают, что при увеличении сближения между поверхностями твердых тел молекулярная составляющая

коэффициента трения (содержащая фрикционные параметры τ 0 и β ) уменьшается, а деформационная возрастает. Зависимость коэффициента трения от параметра h/R показана на рис. 4.4.

Рис. 4.4.Зависимость коэффициента трения от сближения

Экспериментальные результаты. Поведение материала при трении определяется глубиной распространения пластической деформации внутрь образца. С ростом нормального давления на пятнах факти-ческого контакта развиваются сначала упругие, а затем пластические деформации. Некоторое формоизменение, связанное с ползучестью материала, происходит и после, в условиях действия постоянной нагрузки. Окончательное равновесие устанавливается после того, как площадь фактического контакта оказывается достаточной для обеспе-чения необходимой несущей способности. Таким образом, после приработки поверхности устанавливается стационарный режим трения, при котором износ поверхности находится в равновесии с ростом новых деформированных слоев. На рис. 4.5 и 4.6 приведены зависимости коэффициента трения от давления в установившемся режиме граничной смазки при скольжении образцов из стали 36НХТЮ в закаленном и состаренном состояниях по закаленной стали 45. Аустенитная сталь 36НХТЮ

отличается высокой коррозионной стойкостью,

поэтому при трении оксидные слои не образуются,

обусловливает схватывание уже при незна-

чительном нагружении. Более высокая

способность состаренного сплава

объясняется высоким пределом текучести и

твердостью.

Следует заметить, что при различных

условиях

экспериментальные зависимости

коэффициента трения от нагрузки, скорости и

температуры могут быть возрастающими,

убывающими,

неизменными

экстренумами. Параметры трения - износ и

0.07 0

коэффициент трения зависят от структуры

поверхностного слоя и кинетики его

Рис. 4.5. Зависимость коэффициента трения (k) от давления

деградации, которые, в свою очередь,

для сплава 36НХТЮ закаленного от 9700 С (а) и состаренного

определяются внешними условиями. Поэтому

после закалки при 7500 С в течение 1 часа (б).

и существует

необходимость

изучения

структуры и триботехнических свойств материалов в каждом конкретном случае, применительно к тому или иному узлу трения.

Рис. 4.6. Зависимость коэффициента трения

(k) от давления для сплава 36НХТЮ закаленного от 9700 С (1) и состаренного после закалки при 7500 С в течение 1 часа (2)

Рис.4.7. Зависимость коэффициента трения образца из стали 36НХТЮ (а) и меди (б) от скорости скольжения и нагрузки

На рис. 4.7 показаны поверхности, образованные значениями коэффициента трения меди и сплава 36НХТЮ, в зависимости от скорости скольжения и нагрузки. Коэффициент трения меди изменяется по кривой с максимумом в зависимости от нагрузки при всех скоростях. Для сплава 36НХТЮ коэффициент трения при малых скоростях практически не зависит от прикладываемого усилия. Возрастание нагрузки при больших скоростях приводит к падению коэффициента трения. Это свидетельствует о том, что вклад в силу трения, обусловленный пластическим течением поверхностного слоя, уменьшается. Такое возможно при уменьшении

вязкости материала, связанном с увеличением возбуждения при трении. По-видимому, при этом имеет значение процесс фрагментации поверхностных слоев, который приводит к возрастанию подвижности составляющих структуру элементов.

Рис. 4.8. Зависимость момента силы трения композиционного материал TiC-NiCr (а) от нагрузки в паре с различными сплавами (б - TiC-NiCr; в – 3В16К; г – композиция на основе бронзы КАМ)

Анализ параметров трения (рис. 4.8) показывает, что большую роль в процессе контактирования двух материалов при их относительном скольжении играет тепло, выделяющееся на поверхности и в приповерхностном слое.

Действительно, примером влияния контактной температуры на процесс трения может служить поведение композиционного материала TiC-NiCr при трении в паре с материалами, среди которых были КМ TiC-NiCr, стеллит и композиция “твердый сплав - бронза”, различающиеся теплопроводностью. В данных испытаниях, когда сопряжение было в виде торцевого уплотнения, отвод тепла из зоны трения может осуществляться в основном за счет теплопроводности контактирующих материалов. Поскольку теплопроводность КМ TiCNiCr и стеллита (3В16К) значительно меньше, чем у композиции КАМ, разработанной для высоконагруженных узлов трения, характер трения должен различаться. Действительно, из рис. 4.8,б видно, что трение пары одинаковых КМ TiC-NiCr становиться нестабильным уже после нескольких минут работы при нагрузке 1 т. Повышение нагрузки до 2 т сопровождается скачками момента трения, что свидетельствует

о заклинивании сопряжения. В паре со стеллитом КМ TiC-

Температура

NiCr также ведет себя нестабильно (рис.4.8,в), а при нагрузке

2 т испытания были прекращены из-за очень высокого

момента трения. Иное поведение наблюдается, когда

контртелом служил материал КАМ. Критическое значение

момента трения наблюдалось лишь при нагрузке 3 т после

нескольких минут работы (рис. 4.8,г). По-видимому,

работоспособность материала сохраняется до тех пор, пока

температура в зоне трения (рис. 4.9) не достигнет значений,

при которых происходит схватывание.

Рис. 4.9. Схематическое изображение распределения температуры в поверхностном слое в случае пластической деформации при трении



Рекомендуем почитать

Наверх