Фазоимпульсный регулятор на полевом транзисторе. Трехфазный регулятор мощности с импульсно-фазовым управлением Как закрыть тиристор

Детские и спортивные приспособления 12.07.2023
Детские и спортивные приспособления

Зачастую востребованной является схема управления мощностью с минимальным интервалом отсутствия подачи напряжения. Примерами таких ситуаций может быть управление группами ламп накаливания, особо чувствительных к колебаниям в сети нагревателей, сварочным оборудованием, электроприводом, мощными электромагнитами с трехфазным питанием. В данном случае, ценой искажения синусоидального напряжения, добиваются минимальных интервалов паузы.

Для примера можно обратиться на , где автор темы применил схему импульсно-фазового управления трехфазным трансформатором для реализации сварочного процесса. Автор этой темы дал ссылку на журнал Радио, где исходная схема была опубликована ещё в далеком 1986 году №8. В настоящей статье делается попытка более простой, на мой взгляд, реализации этого метода импульсно-фазового управления, что, в немалой степени, достигается применением оптосимисторов вместо импульсных трансформаторов при совместном управлении трехфазным напряжением. Эта схема была применена для управления питанием выпрямителя типа ВАКР регулирования тока гальванического процесса. ВАКР представляет собой мощный трехфазный трансформатор, к вторичной обмотке которого (~24В), подключен выпрямитель на ток 1000 и более ампер. Выпрямитель состоял из тиристоров таблеточного типа с возможностью переполюсовки, т.е. смены полярности выпрямляемого напряжения, что необходимо для реализации требуемого гальванического процесса. Регулирование выполнялось по вторичной сети силового трансформатора и, для формирования требуемых сигналов управления силовыми тиристорами, применялись симисторы меньшей, промежуточной мощности (обозначены на схеме как V1, V2 и V3). Способ переполюсовки оставим, как говориться, «за кадром», концентрируя внимание на принципе работы самой схемы импульсно-фазового управления, поскольку, именно эта ее часть является универсальной и применимой в различных областях, выше указанных.

Единое для всех фаз управление задается частотой генератора на DD1.1 , которая находится в пределах 10000 – 2000 Гц. Частота генератора поступает на три счетчика импульсов DD2, DD3, DD4 с коэффициентом пересчета 16 . Поскольку сброс каждого счетчика осуществляется синхроимпульсом «своей» фазы, формируемая счетчиками паузы оказываются синхронизированы с соответствующими переходами фазных напряжений через ноль. При появлении старшего разряда счетчика имеем импульс управления симистором соответствующей фазы, очевидно, длительностью, которая зависит от частоты задающего генератора DD1 . После заполнения всех разрядов происходит переполнение счетчика и процесс циклически повторяется (до прихода «сбросового» импульса синхронизации). Таким образом, каждый счетчик является своеобразным задатчиком паузы от перехода напряжения через ноль до подачи импульса управления. Для формирования импульсов перехода через ноль применены трансформаторы Т1-Т3, на одном из которых формируется напряжение питания схемы. Эти трансформаторы, одним полюсом, естественно, подключаются к первичному напряжению соответствующей фазы и могут быть заменены на общий трансформатор трехфазного исполнения. Если управление предполагается осуществлять силовыми тиристорами (симисторами) по вторичной стороне, то для формирования синхроимпульсов вполне подойдет напряжение силового трансформатора. И, напротив, при управлении на первичных напряжениях можно обойтись и без трансформаторов, реализуя варианты формирования синхроимпульсов описанных в [ 1 ] , с помощью резисторов с стабилитроном и диодами и такая схема формирования синхроимпульсов будет даже предпочтительнее, поскольку получаемые с ее помощью синхроимпульсы будут более четко выраженными и короткими по времени.

Несмотря на тот факт, что схема рис 1 формирует повторяющиеся импульсы управления (при высоких частотах генератора D1) с длительностью, которая увеличивается с уменьшением частоты задающего генератора D1, этих свойств схемы может оказаться недостаточно для управления нагрузкой с значительной индуктивной составляющей (трансформатор, электромагнит, электродвигатель, (гальванический раствор- чисто активная нагрузка)). В этом случае большей универсальностью может обладать схема, представленная на рис 2. Здесь, после прихода первого управляющего импульса со счетчика происходит его фиксация с помощью соответствующего RS триггера до конца текущего полупериода. Сброс триггеров, очевидно, будет происходить по приходу нулевого напряжения соответствующей фазы.


Рис. 2

Рассмотрим, наконец, как с помощью описанного регулятора можно реализовать устройство плавного пуска асинхронного электродвигателя. Устройства плавного пуска УПП являются одними из наиболее востребованных в приводной технике. От них зависит долговечность работы, связанных с электроприводом механических систем. Часто вместо УПП устанавливают частотный привод, что не всегда оказывается экономически оправдано. Чтобы превратить наш регулятор (рис 1) в УПП, следует обратить внимание на генератор DD1.1/ В литературе [ 2] приведены схемы использования полевых транзисторов для регулирования частоты генераторов, выполненных на логических микросхемах. Если следовать данным рекомендациям, то в качестве управляющего сигнала, для частоты УПП можно использовать факт подачи напряжения питания на регулятор и, соответственно, сформировать плавное изменение частоты этого генератора от минимальной частоты до максимальной в течение желаемого промежутка времени.


Рис. 3

На Рис 3 отдельно показан генератор с возможностью плавного увеличения частоты генерации от момента подачи питания. Напряжение на конденсаторе с2 растет по закону экспоненты по времени, которое зависит от параметров резистора R3 и конденсатора С2. После выключения устройства конденсатор С2 быстро разряжается через диод VD, подготавливая схему к повторному включению. При необходимости не экспоненциального, а, к примеру, линейного закона изменения частоты генератора заряд емкости С2 осуществляют через генератор тока. Практически любая желаемая траектория изменения частоты реализуется на базе микроконтроллеров, с формированием аналогового сигнала либо с помощью скоростного ШИМ, либо, - с помощью отдельного интегрального ЦАП.

В заключение отметим несколько «подводных камней» о которых следует не забывать, имея дело с трехфазными регуляторами мощности с импульсно-фазовым управлением.

  1. Силовые приборы симисторы и тиристоры, применяемые в схемотехнике таких регуляторов работают в более жестких условиях эксплуатации, а следовательно должны выбираться с некоторым запасом относительно максимально допустимых параметров тока и напряжения.
  2. Трехфазные регуляторы мощности с импульсно-фазовым управлением при работы могут «кошмарить» питающую сеть высокочастотными помехами. Для защиты от таких помех иногда помогают дроссельные реакторы или сетевые фильтры, которые следует устанавливать пофазно до подключения к регулятору.
  3. Для УПП наиболее хитрые разработчики устанавливают специальные компактные реле, которые включаются после окончания собственно плавного пуска мотора с целью экономии на мощности силовых полупроводниковых приборов, а, следовательно, и величины радиаторов для них. Эти реле своими контактами просто шунтируют эти силовые полупроводниковые приборы. Возможно, что и в процессе выключения УПП, для увеличения долговечности контактов такого реле, силовые симисторы сначала «подхватывают» задачу коммутации и, после размыкания контактов реле, – уже окончательно разрывают силовую цепь.

Литература:

  1. Шелестов И.П.,Радиолюбителям - полезные схемы - книга 4. . 2001.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1.1 Вентиль

CD4093B

1 В блокнот
DD2-DD4 КМОП счетчик К176ИЕ2 3 В блокнот
D1-D3 Выпрямительный диод

KBL04

3 Диодный мост В блокнот
VT1-VT6 Биполярный транзистор

BC547C

6 В блокнот
VD1-VD3 Оптопара

MOC3023

3 В блокнот
VD4 Стабилитрон

Д814Б

1 В блокнот
VD5 Выпрямительный диод

1N4148

1 В блокнот
V1-V3 Симистор

BT136-600

3 В блокнот
LD1-LD3 Светодиод АЛС307А 3 В блокнот
С1 Конденсатор КМ-10-2.2нФ 1 В блокнот
С2 Конденсатор К50-35-22мкФ 1 В блокнот
R1 Переменный резистор СПО-200К 1 В блокнот
R2 Резистор

27 кОм

20 Номиналы см. рис1 В блокнот
R3, R6, R9 Резистор

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.


Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты , радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы , соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан , период колебания которого около 15-25 сетевых полупериодов.

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает "1" и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был "ноль", то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!


Используемые в конструкции радиокомпоненты: Симистор Т1 - BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т - типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1...1,0 мкФ. Резистор R2 1,0...0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

С1, С2 - 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 - динистор, BTA26-600B - симистор, 1N4148/16 В - диод, светодиод любой.

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.


Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.


Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.


Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.


Схема регулятора предназначена для плавного управления мощности активной нагрузки , питающейся от сети переменного тока 220 вольт частотой 50 Гц. Мощность нагрузки зависит от типа применяемого симистора. В основу метода управления положен принцип фазового регулирования момента включения симистора, включенного последовательно с нагрузкой.

Фото его смотрите на рисунках:

В момент включения мощность на нагрузке нарастает плавно, что есть хорошо, если регулятор используется для регулирования яркости лампы освещения. Также схему регулятора можно применить еще к множеству приборов работающих от сети 220в.

Основным элементом регулятора является микроконтроллер PIC16F84A . По входу RB0 микроконтроллера организовано прерывание в момент перехода сетевого напряжения через ноль. Перепад на этом выводе формирует узел на оптопаре U1 (АОУ110Б). От момента прерывания программно организована задержка включения симистора, которая меняется в определённых пределах. На светодиодном индикаторе это выглядит как регулирование мощности от 0 до 99%.

Схема регулятора мощности представлена на рисунке:

Погрешность соответствия показаний индикатора и действительной мощности подводимой к нагрузке вполне достаточная для применения регулятора для бытовых целей. Кнопки S1 и S2 служат для увеличения и уменьшения мощности соответственно. В подпрограмме опроса кнопок организовано несколько режимов, удобных в пользовании, при однократном нажатии изменение на единицу значения, при долгом нажатии быстрое изменение и очень быстрое.

Узел управления симистором состоит из элементов U2, VD3, R5, стандартное схемное решение, оптотиристор U2 (АОУ103В) обеспечивает гальваническую развязку и с помощью диодного моста VD3 (W08) управление симистором VS1.

Схема питается от сети через трансформатор T1. Далее напряжение выпрямляется диодным мостом VD2, часть напряжения поступает на оптопару U1, для формирования перепада перехода сетевого напряжения через ноль, остальная часть через диод VD1 на микросхему стабилизатора IC1, которая стабилизирует напряжение до 5 вольт. Элементы С1, С2, С7 служат для сглаживания пульсаций сетевого напряжения.

Каждая имеет свои преимущества и недостатки. Рассматриваемая сегодня выбрана мной не случайно. Итак, попал ко мне советский электрокамин. На верхней крышке имелось отверстие под ручку встроенного регулятора мощности, которого там не оказалось. По счастливой случайности мне через некоторое время попался рабочий экземпляр такого же камина. В качестве регулятора там оказалась на первый взгляд довольно сложная схема на двух тиристорах и множеством очень мощных резисторов. Её повторение не имело смысла, хотя у меня и есть доступ к практически любым советским радиодеталям, так как это обошлось бы в разы дороже, чем тот вариант, который изготовлен сейчас. Для начала камин был подключён к сети напрямую, ток потребления оказался 5,6 А, что соответствует паспортной мощности камина 1,25 кВт. Но зачем тратить столько энергии, тем более что она не дешёвая, и не всегда нужно включать обогреватель на полную мощность. Поэтому было принято решение приступить к поискам мощного регулятора мощности. У себя в закромах нашёл уже готовую схему от китайского пылесоса, на симисторе ВТА. Этот регулятор являлся фазовым, т.е. такой тип регуляторов пропускает не всю полуволну сетевого синусоидального напряжения, а только её часть, тем самым ограничивая мощность, подводимую к нагрузке. Регулировка осуществляется открытием симистора при нужном фазовом угле.

Преимущества фазового регулятора:

  • простота изготовления
  • дешевизна
  • лёгкая управляемость

Недостатки:

  • при простой схеме нормальная работа наблюдается только с нагрузками типа ламп накаливания
  • при мощной активной нагрузке появляется неприятный гул (дребезг), который может возникать как в самом симисторе, так и на нагрузке (нагревательная спираль)
  • создаёт множество радиопомех

Было принято решение использовать другой тип регулятора - дискретный. Такие регуляторы открывают симистор на период целой полуволны напряжения, но количество пропущенных полуволн ограничивается. Например, на рисунке сплошная часть графика - прошедшие сквозь симистор полуволны, пунктиром - не прошедшие, то есть в это время симистор был закрыт.

Преимущества дискретных регуляторов:

  • меньший нагрев симистора
  • отсутствие звуковых эффектов даже при достаточно мощной нагрузке
  • отсутствие радиопомех
  • отсутствие загрязнения электросети

Принципиальная схема ступенчатого регулятора мощности

При первом включении на индикаторе светится 0. Включение и отключение происходит одновременным нажатием и удержанием двух кнопок. Регулировка больше/меньше - каждой кнопкой по отдельности. Если не нажимать ни одну из кнопок, то после последнего нажатия через 2 часа регулятор отключится сам, индикатор будет моргать на ступени последнего рабочего уровня нагрузки. При отключении от сети запоминается последний уровень, который будет установлен при следующем включении. Регулировка происходит от 0 до 9 и далее от А до F. То есть всего 16 ступеней регулировки.

При изготовлении платы первый раз применил ЛУТ, и не правильно отзеркалил при распечатке, поэтому контроллер перевёрнут вверх-ногами:) Индикатор тоже не совпал, поэтому припаял его проводками. Когда рисовал плату, по ошибке разместил стабилитрон после диода, пришлось его впаять на другой стороне платы.

На рисунке указан симистор ВТ136, но и ВТА12 прекрасно работает с указанными номиналами деталей. Радиатор возможно великоват, можно было поставить и по меньше, но другого у меня не оказалось.
При первом включении у меня на индикаторе моргал 0, на нажатие кнопок не было реакции. Проблема решилась установкой конденсатора по питанию на 1000 мкФ, вместо 220. В течении месяца использования никаких проблем в работе не выявлено. Схема, прошивка, печатная плата в архиве .



Рекомендуем почитать

Наверх