Плазморез из инвертора своими руками. Самодельная установка плазменной резки металла. Собираем самодельный плазменный резак Плазменный сварочный аппарат своими руками схема

Декор, ландшафтный дизайн 22.10.2023
Декор, ландшафтный дизайн

Плазморез своими руками из инвертора не так сложно собрать. Важно предусмотреть наличие следующих элементов:

  • плазмотрон, т. е. непосредственно ;
  • источник питания, в качестве которого выступает сварочный инвертор (можно применять и трансформатор);
  • компрессор для подачи воздушной струи охлаждения и формирования плазменного потока;
  • кабель-шланги для сборки и подключения отдельных элементов в единую систему.

Плазморез можно использовать не только для резки различных деталей, но и для сварки.

Плазменный самодельный резак можно использовать для выполнения различных работ. Это не только производство, но и бытовые работы, например, обработка различных металлических заготовок, где требуется точный тонкий и высококачественный рез. Есть модели, которые можно использовать для сварки в защищенной газовой среде с использованием аргона.

При сборке внимание следует уделить силе тока. Величина зависит от источника питания, предпочитают использовать инвертор. Он обеспечивает более стабильную работу, энергопотребление экономнее, чем у трансформатора, хотя толщина заготовок, с которыми он может работать, ниже. Почему именно инвертор? Все дело в том, что он удобнее в работе, чем трансформатор. Его вес меньше, он не такой массивный. Электроэнергии потребляется меньше, при этом КПД выше на 10%, что положительным образом сказывается на качестве работы.

Схемы для сборки можно использовать уже готовые, если покупаются элементы конструкции все вместе. Можно ее взять из сети, особенно когда все детали уже есть и покупать ничего не требуется. При сборке внимание следует уделять точности и четкости соответствия схеме, соединению отдельных элементов. Сопло следует брать длинным, но не слишком, так как его придется быстро заменять.

Выбор конструктивных элементов

Изготовление плазмореза своими руками из инвертора требует наличия таких элементов:

  1. Источник питания для оборудования, в этом качестве и выступает инвертор, обеспечивающий подачу тока с необходимыми характеристиками на плазморез. Вместо инвертора, если его нет в наличии или невозможно найти, можно использовать трансформатор.
  2. Если вместо инвертора выбирается трансформатор, необходимо учесть его большой вес и слишком высокое потребление электроэнергии.
  3. Плазмотрон, т. е. плазменный резак, который является основным элементом конструкции.
  4. Воздушный компрессор и кабель-шланговый пакет.

Что выбрать в качестве источника тока для сборки плазмореза? Трансформатор — не самый лучший вариант по целому ряду причин. Дело не только в его большом весе, что затрудняет использование оборудования после сборки, но и в слишком большом потреблении электроэнергии. Устройство получается слишком затратным. Из преимуществ следует отметить слабую чувствительность к перепадам напряжения в сети во время работы. Таким оборудованием можно резать различные заготовки, толщина которых значительная.

Инвертор в качестве источника питания является более предпочтительным, он экономнее, его стоимость ниже . Кроме того, вес инвертора гораздо меньше, устройство после сборки в использовании проще. Но толщина заготовок не может быть слишком большой. Такие плазменные резаки можно использовать в домашних мастерских, на небольшом производстве, так как мощности вполне хватает для такого «скромного» производства. Есть и еще одно преимущество в пользу первого. Это уровень КПД, который у инверторного резака примерно на 30% выше, дуга отличается более стабильными показателями, резка получается качественнее. Удобнее такое оборудование и для работы в труднодоступных местах, где трансформаторные использовать не получается. Плазмотрон — главный элемент резака, его конструкция включает в себя сопло, канал подачи воздуха (сжатого для обеспечения резки), электрод, изолятор/охладитель.

Вернуться к оглавлению

Сборка плазменного резака

Для плазмотрона необходимо подобрать электрод, можно приобрести из тория, бериллия, циркония либо гафния. Такие материалы являются оптимальными для обеспечения резки воздушно-плазменного типа. На поверхности электродов в процессе резки возникают так называемые тугоплавкие оксиды, они не дают электроду разрушаться. При выборе следует помнить, что некоторые их этих металлов опасны для сварщика. Бериллий вызывает образование радиоактивных оксидов, а торий — токсичных. Лучше всего использовать гафний, он абсолютно безопасен для оператора.

При сборке внимание следует уделить соплу, при помощи которого формируется струя для резки. От диаметра сопла зависят характеристики струи, время резки, ширина резки. Лучше всего использовать изделия диаметром в 3 см, длина его должна быть значительной, чтобы рез получился более качественным и аккуратным. Однако брать слишком длинное сопло нельзя, оно быстро разрушается.

Для подачи воздуха конструкции необходим компрессор. Особенности работы резака предполагают, что использоваться будут газы для защиты и плазмообразования, при этом работа проводится при силе тока в 200 А, но не больше. Для функционирования устройства используется сжатый воздух, он необходим для охлаждения оборудования в процессе работы и для формирования плазмы. Такой вариант позволяет резать заготовки, толщина которых составляет 50 мм. Для промышленного оборудования сжатый воздух не используется, здесь применяются кислород, гелий, водород, аргон, азот, их смеси.

Для соединения источника питания, плазмотрона и компрессора применяется специальный кабель-шланговый пакет. Порядок сборки такой:

  1. Инвертор (или трансформатор) электрическим кабелем соединяется с электродом для создания дуги.
  2. Через шланг от компрессора подается сжатый воздух, он образует плазменную струю внутри плазмотрона.

Вернуться к оглавлению

Как работает плазменный резак?

После того как плазменный резак собран, надо проверить его работоспособность. При включении инвертор начинает подавать ток на плазмотрон с высокой частотой. Появляется дуга, ее температура в этот момент составляет от 6000°С до 8000°С, зажигается она между наконечником сопла и рабочим электродом. Далее в камеру начинает поступать сжатый воздух, он из патрубка проходит через электродугу, нагревается, в объеме увеличивается до 100 раз. Струя приобретает токопроводящие свойства, ионизируется.

Соплом формируется узкий рабочий поток, скорость которого равна 2-3 м/сек. Температура в это время сильно повышается, может достигать от 25000°С до 30000°С. На выходе образуется высокотемпературная плазма, используемая для резки. При соприкосновении плазмы и детали дежурная первоначальная дуга гаснет, а зажигается уже режущая, которая обрабатывает деталь локально. Металл плавится только в месте реза, потоком воздуха все металлические расплавленные частички сдуваются.

Использование такого резака из обычного сварочного инвертора позволяет получить аккуратные резы в металлических заготовках. При работе необходимо следить, чтобы пятно дуги находилось строго по центру катода/электрода, для чего используется так называемая тангенциальная подача рабочего воздушного потока. Если при работе такой воздушный вихревой поток будет нарушен, то работать устройство начнет нестабильно, качество реза сильно ухудшится. Важно, чтобы при работе не образовывалось сразу две дуги, в этом случае аппарат просто выйдет из строя. Нельзя, чтобы плазменный резак имел слишком сильный поток воздуха.

Скорость, обеспечивающая хорошее качество, равна 800 м/сек, но при этом сила тока должна составлять до 250 А, не выше.

Но надо учесть, что расход воздуха будет увеличен.

Плазменный резак, в качестве главного элемента которого используется инвертор для дуговой сварки, применяется для реза металлических заготовок. Сборка простая, конструкция включает себя такие элементы, как источник тока, сопло, плазменный резак, компрессор. При сборке следует сразу определиться с источником питания, вместо инвертора некоторые предпочитают трансформатор. Все преимущества и недостатки устройств были описаны выше, вам остается только сделать выбор.


Плазменная резка активно используется во многих промышленных областях. Однако плазморез вполне способен пригодиться частному мастеру. Аппарат позволяет с высокой скоростью и качеством резать любые токопроводящие и не токопроводящие материалы. Технология работы создает возможность обработки любых деталей или создания фигурных резов, которая осуществляется дугой плазмы высокой температурой. Создается поток базовыми составляющими – электрическим током и воздухом. Но выгоды от использования аппарата несколько омрачаются ценой заводских моделей. Чтобы обеспечить себя возможностью работы можно создать плазморез своими руками. Далее приводим подробную инструкцию с порядком действий и перечнем оборудования, которое необходимо.

Что выбрать: трансформатор или инвертор?

За счет наличия особенностей и параметров аппаратов для проведения плазменной резки возможно разделить их на типы. Наибольшую популярность завоевали инверторы и трансформаторы. Стоимость аппарата каждой модели будет определяться заявленной мощностью и рабочими циклами.

Инверторы обладают малым весом, компактными габаритами и минимально потребляют электроэнергию. К недостаткам оборудования можно отнести повышенную чувствительность к перепадам напряжения. Не каждый инвертор способен функционировать в особенностях режима нашей электрической сети. Если выходит из строя система защиты аппарата, то необходимо обращаться в сервисный центр. Также инверторные плазморезы обладают ограничением по номинальной мощности – не более 70 ампер и малым периодом включения оборудования при большом токе.

Трансформатор, по традиции, считается более надежным, чем инвертор. Они даже при ощутимом падении напряжения теряют только часть мощности, но не ломаются. Это свойство определяет более высокую стоимость. Плазморезы на основе трансформатора могут работать и включаться в рабочий режим на больший срок. Подобное оборудование применяется в автоматических линиях с ЧПУ. Отрицательным моментом трансформаторного плазмореза будет значительная масса, высокое энергопотребление и размеры.

Наибольшее значение толщины металла, которое способен резать плазморез составляет от 50 до 55 миллиметров. Среднее значение мощности оборудования равняется 150 – 180 А.

Средняя стоимость заводских аппаратов

Ассортимент плазморезов для ручной резки материалов сейчас поистине огромен. Ценовые категории также различны. Цену аппаратов определяют следующие факторы:

  • Тип устройства;
  • Производитель и страна производства;
  • Максимально возможная глубина реза;
  • Модель.

Решив изучить возможность покупки плазмореза, необходимо интересоваться стоимостью дополнительных элементов и комплектующих к оборудованию, без которых полноценно работать будет сложно. Средние цены на аппараты в зависимости от толщины разрезаемого металла составляют:

  • До 6 мм – 15 000 – 20 000 рублей;
  • До 10 мм – 20 000 – 25 000;
  • До 12 мм – 32 000 – 230 000;
  • До 17 мм – 45 000 – 270 000;
  • До 25 мм – 81 000 – 220 000;
  • До 30 мм – 150 000 – 300 000.

Популярными аппаратами являются «Горыныч», «Ресанта» ИПР-25, ИПР-40, ИПР-40 К.

Как можно увидеть ценовой диапазон обширен. В связи с этим актуальность самодельного плазмореза повышается. Изучив инструкции вполне можно создать аппарат, ничуть не уступающих по техническим характеристикам. Подобрать инвертор или трансформатор можно по цене существенно ниже, чем представленные расценки.

Принцип действия

После нажатия на кнопку розжига происходит пуск источника электроэнергии, подающий в рабочий инструмент высокочастотный ток. Возникает дуга (дежурная) между расположенным в резаке (плазмотроне) наконечником и электродом. Температурный диапазон от 6 до 8 тысяч градусов. Стоит заметить, что рабочая дуга создается не моментально, существует определенная задержка.

Затем в полость плазмотрона поступает сжатый воздух. Для этого предназначается компрессор. Проходя сквозь камеру с дежурной дугой на электроде, он подвергается нагреву и увеличивается в объеме. Процесс сопровождается ионизацией воздуха, что переводит его в токопроводящее состояние.

Через узкое сопло плазмотрона полученный поток плазмы подается к обрабатываемой детали. Скорость потока составляет 2 – 3 м/с. Воздух в ионизированном состоянии способен нагреваться до 30 000°С. В этом состоянии значение электропроводимость воздуха близка к проводимости металлических элементов.

После контакта плазмы с разрезаемой поверхностью дежурная дуга отключается и действовать начинает рабочая. Далее осуществляется плавка в точках резки, из которых расплавленный металл продувается подаваемым воздухом.

Отличия аппаратов прямого и косвенного действия

Имеются различные типы аппаратов, отличающихся принципами работы. В оборудовании прямого действия предполагается работа электрической дуги. Она приобретает цилиндрическую форму и непосредственно соединяется с газовой струёй. Подобная конструкция оборудования позволяет обеспечить высокую температуру дуге (до 20 000°С) и высокоэффективную охлаждающую систему для других компонентов плазмореза.

В аппаратах косвенного действия работа предполагается с меньшим КПД. Это определяет их меньшее распространение в производстве. Конструктивная особенность оборудования состоит в том, что активные точки цепи размещаются на особых вольфрамовых электродах или трубе. Применяются они чаще для проведения нагрева и напыления, но для резки практически не используются. Чаще всего применяются в ремонте автомобилей.

Общей чертой является присутствие в конструкции воздушного фильтра (продлевает срок эксплуатации электрода, обеспечивает быстрый запуск оборудования) и охладителя (создает условия для длительной эксплуатации аппарата без перерыва). Отличным показателем является возможность непрерывной работы устройства на протяжении 1 часа с 20-минутным перерывом.

Конструкция

При должном желании и умении самодельный плазморез способен создать любой желающий. Но чтобы он мог полноценно и эффективно функционировать необходимо соблюдать определенные правила. Желательно примерять инвертор, т.к. именно он способен обеспечить стабильную подачу тока и стабильную работу дуги. В результате не возникают перебои и значительно уменьшится расход электричества. Но стоит учесть, что плазморез на основе инвертора способен справиться с меньшей толщиной металла, чем трансформатор.

Необходимые комплектующие

Перед началом сборочных работ необходимо подготовить ряд комплектующих, материалов и оборудования:

  1. Инвертор или трансформатор с подходящей мощностью. Чтобы исключить ошибку необходимо определиться с планируемой толщиной резания. Уже на основании этой информации подбирать нужное устройство. Однако с учетом ручной резки стоит выбрать именно инвертор, т.к. он меньше весит и потребляет меньше электричества.
  2. Плазмотрон или плазменный резак. Тоже имеются свои особенности выбора. Прямого действия лучше выбирать для работы с токопроводящими материалами, а косвенного – для не токопроводящих.
  3. Компрессор сжатого воздуха. Требуется уделять внимание номинальной мощности, т.к он обязан справляться с возлагаемой нагрузкой и соответствовать остальным компонентам.
    Кабель-шланг. Требуется для соединения всех комплектующих плазмореза и подачи воздуха к плазмотрону.

Подбор блока питания

Работу плазмореза обеспечивает блок питания. Он формирует заданные параметры электрического тока, напряжения и подает их к режущему узлу. Основным питающим узлом может стать:

  • Инвертор;
  • Трансформатор.

Подходить к выбору питающего элемента необходимо, учитывая особенности аппаратов, описанные выше.

Плазмотрон

Плазмотрон является генератором плазмы. Это рабочий инструмент, в котором формируется плазменная струя, непосредственно разрезающая материалы.

Основными особенностями устройства являются:

  • Создание сверхвысокой температуры;
  • Простая регулировка мощности тока, запуска и остановки рабочих режимов;
  • Компактные габариты;
  • Надежность работы.

Конструктивно плазмотрон состоит из:

  • Электрод/катод, имеющие в своем составе цирконий или гафний. Эти металлы отличаются высоким уровнем термоэлектронной эмиссией;
  • Сопло в основном изолируется от электрода;
  • Механизм, закручивающий плазмообразующий газ.

Сопло, электрод являются расходными материалами плазмотрона. Если плазморезом обрабатывается заготовка до 10 миллиметров, то один комплект электродов расходуется в течение 8 часов работы. Износ происходит равномерно, что позволяет менять их одновременно.

При несвоевременной замене электрода может нарушаться качество резки – изменяется геометрия реза или возникают волны на поверхности. В катоде постепенно выгорает гафниевая вставка. Если она обладает выработкой более 2 миллиметров, то электрод может пригорать и перегревать плазмотрон. Это значит, что не вовремя замененные электроды повлекут за собой быстрый выход из строя остальных элементов рабочего инструмента.

Все плазмотроны можно разделить на 3 объемные группы:

  • Электродуговой – имеет минимум один анод и катод, которые подключены к источнику питания с постоянным током;
  • Высокочастотный – отсутствуют и электроды, и катоды. Связь с питающим устройством основывается на индуктивных/емкостных принципах;
  • Комбинированный – функционирует при воздействии высокочастотного тока и горении дуговых разрядов.

Исходя из метода стабилизации дуги, все плазмотроны также можно разделить на газовый, водяной и магнитный типы. Подобная система является чрезвычайно важной для работы инструмента, т.к. она формирует сжатие потока и фиксирует его на центральной оси сопла.

В настоящее время в продаже имеются различные модификации плазмотронов. Возможно, необходимо изучить предложения, и купить готовый. Однако сделать самодельный в домашних условиях вполне возможно. Для этого требуется:

  • Рукоятка. Необходимо предусмотреть отверстия для проводов.
  • Кнопка.
  • Соответствующий электрод, рассчитанный под действующий ток.
  • Изолятор.
  • Завихритель потока.
  • Сопло. Желательно комплект с различными диаметрами.
  • Наконечник. Необходимо предусмотреть защиту от брызг.
  • Дистанционная пружина. Позволяет выдерживать зазор между поверхностью и соплом.
  • Насадка для удаления нагара и снятия фаски.

Проводить работу можно одним плазмотроном за счет сменных оголовков с различными диаметрами, направляющие плазменный поток на деталь. Необходимо обратить внимание, что они, так же как и электроды, в процессе работы станут оплавляться.

Сопло закрепляется прижимной гайкой. Непосредственно за ним находится электрод и изолятор, предупреждающий розжиг дуги в неположенном месте. Далее размещен завихритель потока, позволяющий усилить эффект дуги. Все элементы размещаются во фторопластовом корпусе. Что-то возможно сделать самостоятельно, а что-то придется приобретать в магазине.

Заводской плазмотрон позволит проводить работу без перегрева более длительное время за счет системы воздушного охлаждения. Однако при кратковременной резке это неважный параметр.

Осциллятор

Осциллятор представляет собой генератор, который вырабатывает высокочастотный ток. Подобный элемент включается в цепь плазмореза между источником питания и плазмотроном. Способны действовать по одной из схем:

  1. Создание кратковременного импульса, который способствует возникновению дуги без прикосновения к поверхности изделия. Внешне представляет собой малую молнию, подаваемую с торца электрода.
  2. Поддержка постоянного напряжения с высоким значением напряжения, накладываемое на сварочный ток. Обеспечивает сохранность стабильного поддержания дуги.

Оборудование позволяет быстро создавать дугу и приступать к резке металла.

В основной своей массе обладают схожим строением и состоят из:

  • Выпрямителя напряжения;
  • Блока накопителя заряда (конденсаторы);
  • Блок питания;
  • Модуль создания импульсов. Включает в себя колебательный контур и разрядник;
  • Блок управления;
  • Повышающего трансформатора;
  • Прибора контроля напряжения.

Основной задачей является модернизация входящего напряжения. Происходит повышение частоты и уровня напряжения, уменьшая период действия менее 1 секунды. Последовательность работы следующая:

  1. Нажимается кнопка на резаке;
  2. В выпрямителе ток выравнивается и становится однонаправленным;
  3. В конденсаторах происходит накопление заряда;
  4. Ток подается на колебательный контур трансформаторных обмоток, повышая уровень напряжения;
  5. Контроль за импульсом осуществляет схема управления;
  6. Импульсом создается разряд на электроде, поджигающий дугу;
  7. Действие импульса завершается;
  8. После прекращения резки осциллятором производится продувка плазмотрона на протяжении еще 4 секунд. За счет этого достигается охлаждение электрода и обрабатываемой поверхности.

В зависимости от типа осциллятора он может применяться по-разному. Однако общей характеристикой является повышение напряжения до 3000 – 5000 вольт и частоты от 150 до 500 кГц. Основные же отличия состоят в интервалах действия высокочастотного тока.

Для использования в плазморезе целесообразно использовать осциллятор для бесконтактного розжига дуги. Подобные элементы применяются для работы в аргоновых сварочниках. В них вольфрамовые электроды будут быстро затупляться если производить контакт с изделием. Включение в схему аппарата осциллятора позволит создавать дугу не совершая контакта с плоскостью детали.

Использование осциллятора позволяет существенно снижать потребность в дорогих расходных материалах и улучшать процесс резки. Правильно подобранное оборудование в соответствии с планируемой работой позволяет повышать ее качество и скорость.

Электроды

Электродам отводится немаловажная роль в процессе создания, поддержания дуги и непосредственной резки. В составе присутствуют металлы, позволяющие электроду не перегреваться и преждевременно не разрушаться при работе с дугой в высокотемпературных режимах.

При покупке электродов для плазмореза необходимо уточнять их состав. С содержанием бериллия и тория создаются вредные пары. Они подойдут для работы в соответствующих условиях, с надлежащей защитой работника, т. е. требуется дополнительная вентиляция. Из-за этого для применения в быту лучше покупать гафниевые электроды.

Компрессор и кабель - шланги

В конструкции большинства самодельных плазморезов включаются компрессоры и шланговые трасы для направления воздуха к плазмотрону. Данный элемент конструкции позволяет разогревать электрическую дугу до 8000°С. Дополнительной функцией является продувка рабочих каналов, очищая их от загрязнений и проводя удаление конденсата. Кроме этого, сжатый воздух способствует охлаждению компонентов аппарата при длительной работе.

Для работы плазмореза возможно применять обычный компрессор сжатого воздуха. Воздухообмен осуществляется тонкими шлангами с подходящими разъемами. На входе размещается электрический клапан, который регулирует процесс подачи воздуха.

В канале от аппарата к горелке размещается электрический кабель. Поэтому здесь необходимо размещать шланг с большим диаметром, в котором может разместиться кабель. Проходящий воздух несет и вентиляционную функцию, так как способен охладить провод.

Масса должна выполняться из кабеля с сечением от 5 мм2. Должен быть зажим. При плохом контакте массы переключение рабочей дуги на дежурную будет проблематичным.

Схемы

Сейчас можно найти множество схем, по которым можно собрать качественный аппарат. Подробно с условными обозначениями помогут разобраться видео. Подходящий принципиальный чертеж оборудования можно выбрать из представленных ниже.






Сборка

До начала сборочного процесса желательно уточнить совместимость подобранных комплектующих. Если вам ранее не приходилось собирать плазменный резак своими руками, то необходимо консультироваться с опытными мастерами.

Процедура сборки предполагает следующую последовательность:

  1. Подготовить все собранные комплектующие;
  2. Сборка электрической цепи. В соответствии со схемой подключается инвертор/трансформатор, электрический кабель;
  3. Подключение компрессора и подачи воздуха к аппарату и плазмотрону с помощью гибких шлангов;
  4. Для собственной подстраховки можно использовать источник бесперебойного питания (ИБП), учитывая емкость аккумулятора.

Подробная технология сборки оборудования представлена на видео.

Проверка плазмореза

После того как подключены все узлы в единую конструкции, необходимо провести проверку на работоспособность.

Обратим внимание на то, что проверка и работа с плазморезом должна осуществляться в защитной одежде с применением средств индивидуальной защиты.

Необходимо включить все агрегаты и нажать кнопку на плазмотроне, подав электричество к электроду. В этот момент в плазмотроне должна образоваться дуга с высокой температурой, проскочив между электродом и соплом.

Если собранное оборудование для плазменной резки способно резать металл толщиной до 2 см, то все сделано верно. Следует учесть, что самодельный аппарат из инвертора не сможет разрезать детали с толщиной более 20 миллиметров, так как недостаточно мощности. Для резки толстых изделий потребуется в качестве источника питания использовать трансформатор.

Достоинства самодельного аппарата

Выгоды, предоставляемые аппаратом воздушно-плазменной резки сложно переоценивать. Он способен точно резать листовой металл. После работы не требуется дополнительно обрабатывать торцы. Главным преимуществом является сокращение времени на работу.

Это уже весомые доводы для самостоятельно сборки оборудования. Схема не отличается сложностью, поэтому дешево переделать инвертор или полуавтомат по силам каждому.

В заключение обратим внимание на то, что работать с плазморезкой необходимо опытному специалисту. Лучше всего если это сварщик. Если же опыта мало, то рекомендуем сначала изучить технологию работы с фото и видео, а после этого приступать к выполнению поставленных задач.

Современные инверторные сварочные аппараты покрывают большинство потребностей для получения неразъемных соединений металлических заготовок. Но в ряде случаев куда более удобным будет аппарат несколько иного типа, в котором основную роль играет не электрическая дуга, а поток ионизированного газа, то есть плазменный сварочный аппарат. Приобретать его для периодического использования не слишком рентабельно. Можно сделать такой сварочный аппарат своими руками.

Оборудование и компоненты

Изготовить микроплазменный сварочный аппарат проще всего на основе уже имеющегося инверторного сварочного аппарата. Для выполнения такой модернизации вам понадобятся следующие компоненты:

  • любой инверторный сварочный аппарат для TIG сварки со встроенным осциллятором или без него;
  • сопло с вольфрамовым электродом от TIG-сварочника;
  • аргоновый баллон с редуктором;
  • небольшой кусочек прутка из тантала или молибдена диаметром и длиной до 20 мм;
  • фторопластовая трубка;
  • медные трубки;
  • небольшие кусочки листовой меди толщиной 1-2 мм;
  • электронный балласт;
  • резиновые шланги;
  • гермоввод;
  • хомуты;
  • проводка;
  • клеммы;
  • автомобильный бачок стеклоочистителя с электронасосом;
  • выпрямительный блок питания электронасоса стеклоочистителя.

Работы по доводке и изготовлению новых деталей и узлов потребуют использования следующего оборудования:

  • токарный станок;
  • электропаяльник;
  • горелка для пайки с баллоном;
  • отвертки;
  • пассатижи;
  • амперметр;
  • вольтметр.

Вернуться к оглавлению

Теоретические основы

Сварочный аппарат для плазменной сварки может быть одного из 2-х основных типов: открытого и закрытого. Основная дуга сварочного аппарата открытого типа горит между центральным катодом горелки и изделием. Между соплом, которое служит анодом, и центральным катодом горит только дежурная дуга для возбуждения основной в любой момент времени. Сварочный аппарат закрытого типа имеет только дугу между центральным электродом и соплом.

Сделать долговечный по 2-му принципу довольно трудно. При прохождении основного сварочного тока через сопло-анод этот элемент испытывает колоссальные тепловые нагрузки и требует очень качественного охлаждения и использования соответствующих материалов. Обеспечить термостойкость конструкции, когда делается такой аппарат своими руками, очень трудно. Когда делается плазменный аппарат своими руками, для долговечности лучше выбирать открытую схему.

Вернуться к оглавлению

Практическая реализация

Часто при кустарном изготовлении плазменного сварочного аппарата сопло вытачивают из меди. При отсутствии альтернативы такой вариант возможен, но сопло становится расходным материалом даже при прохождении через него только дежурного тока. Его придется часто менять. Если удастся достать небольшой кусочек кругляка из молибдена или тантала, лучше сопло изготовить из них. Тогда можно будет ограничиваться периодической чисткой.

Размер центрального отверстия в сопле подбирают опытным путем. Начинать нужно с диаметра 0,5 мм и постепенно растачивать его до 2 мм, пока поток плазмы не станет удовлетворительным.

Конусный зазор между центральным вольфрамовым катодом и соплом-анодом должен составлять 2,5-3 мм.

Сопло вкручивается в полую рубашку охлаждения, которая через фторопластовый изолятор соединяется с держателем центрального электрода. В рубашке охлаждения циркулирует охлаждающая жидкость. В качестве таковой в теплое время года можно использовать дистиллированную воду, зимой лучше антифриз.

Рубашка охлаждения представляет собой 2 полые медные трубки. Внутренняя диаметром и длиной около 20 мм располагается на переднем конце внешней трубки с диаметром около 50 мм и длиной порядка 80 мм. Пространство между торцами внутренней трубки и стенками наружной запаивают тонкой листовой медью. В рубашку с помощью газовой горелки впаивают медные трубки диаметром 8 мм. По ним поступает и отводится охлаждающая жидкость. Кроме того, к рубашке охлаждения нужно припаять клемму для подачи положительного заряда.

Во внутренней трубке делают резьбу, в которую вкручивают съемное сопло из термостойких материалов. На выдвинутом конце наружной трубки также нарезают внутреннюю резьбу. В нее вкручивается изолирующее кольцо из фторопласта. В кольцо вкручивается держатель центрального электрода.

Через стенку наружной трубки в пространство между рубашкой охлаждения и фторопластовым изолятором впаивается трубка подачи аргона такого же диаметра, как для охлаждения.

По рубашке охлаждения циркулирует жидкость из бачка стеклоочистителя. Питание на насос его электродвигателя подается через отдельный выпрямитель на 12 В. Выход для подачи на бачке уже есть, возврат жидкости можно врезать через стенку или крышку бачка. Для этого в крышке сверлится отверстие и вставляется отрезок трубки через гермоввод. Резиновые шланги циркуляции жидкости и подачи аргона соединяются со своими трубками хомутами.

Положительный заряд берется от основного источника питания. Для ограничения тока через поверхность сопла подбирается подходящий электронный балласт. Подаваемый электрический ток должен иметь постоянное значение в районе 5-7 А. Оптимальная величина тока подбирается экспериментально. Это должен быть минимальный ток, который обеспечивает устойчивое горение дежурной дуги.

Возбуждение дежурной дуги между соплом и вольфрамовым катодом может осуществляться одним из двух способов. Встроенным в сварочный аппарат осциллятором или при его отсутствии контактным способом. Второй вариант требует усложнения конструкции плазменной горелки. Держатель центрального электрода при контактном возбуждении делают подпружиненным относительно сопла.

При нажатии на резиновую кнопку штока, соединенного с держателем электрода, острый конец центрального вольфрамового катода контактирует с конусной поверхностью штока. При коротком замыкании в точке контакта резко повышается температура, что позволяет возбудить дугу при отведении пружиной катода от анода. Контакт должен быть очень кратковременным, иначе поверхность сопла пригорит.

Возбуждение тока высокочастотным осциллятором предпочтительнее для долговечности конструкции. Но его приобретение или даже изготовление делает для плазменной сварки нерентабельным.

При работе положительный вывод сварочного аппарата соединяется с деталью без балласта. Когда сопло оказывается на расстоянии несколько миллиметров от заготовки, электрический ток переключается с сопла на деталь. Его значение вырастает до выставленного на сварочном аппарате, а образование из аргона плазмы интенсифицируется. Регулируя подачу аргона и сварочный ток, можно добиться необходимой интенсивности течения плазмы из сопла.

С каждым годом темпы развития промышленности увеличиваются. Это приводит к внедрению новых технологии и способов изготовления тех или иных изделий. При этом нововведения должны быть не только эффективнее морально устаревших методов, но и не уступать по экономической целесообразности и безопасности работы. Давайте поговорим о том, что такое сварка плазменная. Появилась она относительно недавно, но уже очень активно применяется во многих

О плазменной сварке

Такой метод соединения используется для металлических труб, нержавейки и некоторых других материалов. Суть метода заключается в локальном плавлении при направлении плазменного потока на нужный участок. Плазма же представляет собой ионизированный поток газа, который содержит множество заряженных частиц, активно проводящих электрический ток. При нагреве происходит ионизация газа, что достигается при использовании высокоскоростной дуги, выходящей непосредственно из плазмотрона. Естественно, что с повышением температуры газа увеличивается степень ионизации. Температурная амлитуда дуги - не менее 5 и не выше 30 тысяч градусов по Цельсию. Конечно, сегодня сварка плазменная используется повсеместно, но оборудование, в частности плазмотрон, очень дорогостоящее. Таким способом можно соединять детали без разделки кромок, что очень удобно.

Принцип работы

Сварка плазменная возможна только в том случае, если из обычной дуги удастся получить плазменную. Достигается это обычно сжатием и с помощью системы принудительной подачи специального газа в дугу. В качестве плазмообразующего газа используется аргон с небольшим количеством гелия или же водорода. Крайне важно создать защитную оболочку вокруг электрода, для этих целей лучше всего подходит все тот же аргон. Кстати, электроды выполняются из вольфрама, активированного торием или иттрием. Стоит отметить, что стенки плазмотрона сильно нагреваются из-за высокого давления, поэтому их требуется постоянно охлаждать. Из всего вышесказанного можно сделать вывод, что сварка плазменная примечательна высокой температурой в сочетании с небольшим диаметром дуги. Последний параметр позволяет увеличить давление на металл в несколько раз. Кроме того, процесс поддерживается при небольшом токе в 0,2-3,0 Ампер.

Плазменная сварка своими руками

В первое время такой не использовался среди домашних умельцев, так как требовал высокой квалификации. Сегодня ситуация не изменилась кардинально. Тем не менее есть , которые подходят для использования в бытовых условиях. Технология в этом случае достаточно простая. Вам понадобится обзавестись специальным электродами и присадочной проволокой.

Перед началом работ электрод затачивается до получения конусообразной формы с углом не более 30 градусов. Крайне важно правильно установить электрод. Главное - следить за совпадением оси электрода с осью газообразующих насадок. Сварочный стык обрабатывается точно так же, как и при аргоновой сварке. Кромки зачищаются и обезжириваются, только после этого можно приступать к выполнению работ. Кстати, обратите внимание на отсутствие зазоров более 1,5 мм. Участки прихватки нужно дополнительно зачистить и следить за тем, чтобы прихваточные точки и сварочный шов были аналогичными по качеству.

Продолжаем выполнение работ

Плазменная сварка своими руками выполняется при величина которого не должна выходить из рекомендуемого диапазона. Кроме того, за 5-20 секунд до начала сварки подается защитный газ, который отключается примерно через 10-15 секунд после обрыва дуги. Во время работы плазмотрон должен находиться на расстоянии не более 1 см от изделия, а дугу желательно не обрывать до окончания шва. При сварке нельзя допускать перегрева металла. По достижении критической отметки сварка плазменная приостанавливается. Металл охлаждается сжатым воздухом, и только после этого работы возобновляются. Обратите внимание на то, что горелка должна перемещаться плавно и равномерно, как на автоматическом устройстве. В этом случае вы можете рассчитывать на действительно качественный и надежный шов.

Плазменная сварка «Горыныч»: цена и особенности

Многофункциональный сварочный аппарат «Горыныч» является одним из самых известных среди отечественных аппаратов. Можно говорить о том, что это действительно качественное изделие, благодаря которому можно самостоятельно осуществлять сварочные работы. Стоит отметить, что модельный ряд «Горынычей» отличается по мощности. Есть модели на 8, 10 и 12 Ампер. Первый вариант отлично подойдет для бытовых нужд, средний имеет отличное соотношение цена/производительность, а наиболее мощный «Горыныч» используется только профессионалами. Так, модель на 8 Ампер обойдется в 29 тысяч, на 10 А - в 30 тысяч, а на 12 А - в 33 000 рублей. В принципе, плазменная сварка «Горыныч», цена которой ниже, чем у зарубежных аналогов, очень популярна на территории России, Украины, Беларуси и др. государств.

Плазменный сварочный аппарат

Если раньше найти подходящую модель было весьма сложно, то сегодня с этим проблем не возникает. Как правило, аппарат плазменной сварки можно найти в любом специализированном магазине. Вы будете приятно удивлены большим выбором предлагаемых агрегатов. Но все они намного дороже электросварки и инверторов. Плазменный аппарат на фоне остальных вариантов смотрится очень выгодно. Во-первых, скорость выполняемых работ в разы выше, а во-вторых, практически не остается никаких отходов. Для работы плазмосваркой необходимы электричество и сжатый воздух, а при наличии специального компрессора - только подключение к сети. Периодической замене подлежит сопло горелки и электрод. Кроме того, плазматрон должен регулярно заправляться. Для этого применяют специальные баллоны. Интересно, что и сварка считаются самыми безопасными. Тем не менее работы желательно проводить на открытом воздухе или в хорошо вентилируемом помещении.

О сварке на среднем токе

Мы уже немного знаем о том, что такое плазменная сварка. Цена на оборудование, как вы видите, зависит от его мощности. Но стоит обратить внимание на то, что есть несколько видов сварки. Один из них - работа на среднем токе (50-150 Ампер). Такую сварку можно сравнивать с аргоновой, но она считается несколько эффективней, так как мощность дуги выше, а площадь нагрева ограничена. Такой вариант, по сравнению с традиционной дугой, позволяет увеличить глубину проплавки обрабатываемого металла и улучшить передачу теплоты вглубь слоев. В принципе, это обусловлено не только энергетической характеристикой, но и высоким давлением на сварочные ванны. Сварка на среднем токе выполняется с помощью присадочной проволоки. На сегодняшний день это очень востребованное и эффективное решение. Если вы собираетесь работать в домашних условиях, вам подойдет такого рода плазменная сварка. Цена на оборудование отличаться не будет, так как там предусмотрена возможность регулировки.

Сварка на большом токе

В этом случае работы протекают под током свыше 150 Ампер. Это необходимо для получения большего воздействия на металл. По сути, сварка при 150 А аналогична сварке при такой же температуре неплавящимся электродом. Отличительная особенность такого решения заключается в том, что во время выполнения работ образуется сквозное отверстие в ванной, что гарантирует полное проплавление обрабатываемой поверхности. Но тут крайне важно соблюдать технологию, так как при небрежном отношении можно с легкостью получить прожоги. Кроме того, должны соблюдаться и другие важные параметры: охлаждение плазмотрона и условия его хранения, периодическая замена сопла горелки, дозаправка и многое другое. В принципе, инструкцию пишут не просто так, и предъявляемые требования необходимо соблюдать. Обычно аппарат плазменной сварки и резки, работающий на большом токе, необходим для соединения легированных и низкоуглеродистых сталей, меди, титана и др. материалов.

  • 1 Конструктивные особенности
  • 2 Конструкция плазмореза, советы по изготовлению аппарата
  • 3 Как функционирует плазморез
  • 4 Вентиляция при плазменной резке
  • 5 Самодельный плазморез схемы

Сделать плазморез своими руками из инвертора не так трудно, как кажется поначалу. Прежде чем начать самому изготавливать аппарат, нужно приготовить все необходимое:

  • плазменный резак (плазмотрон);
  • инверторное устройство либо трансформатор, выступающий источником электрического тока;
  • компрессор, c помощью которого будет образовываться воздушная струя, формирующая и охлаждающая плазменный поток;
  • кабели, шланги, предназначенные для соединения всех частей устройства.

Выбирая источник питания, необходимо принимать во внимание силу тока, вырабатываемую устройством. Зачастую используют инверторный инвертор, который делает процесс резки стабильным и позволяет экономить электрическую энергию. Инвертор, в отличие от трансформатора, мало весит и имеет небольшой размер, поэтому его удобно использовать. Главный недостаток плазмореза на основе инвертора – им трудно резать очень толстые заготовки.

Для изготовления плазмореза своими руками можете воспользоваться приведенными ниже схемами. Ниже также будет представлено видео, в которых объясняется процесс сборки оборудования. Необходимо строго следовать схеме, подбирать составные компоненты таким образом, чтобы части прибора подходили друг к другу.

Конструктивные особенности

Первое, что нужно отыскать для создания плазменного резака – это источник питания. Из него в плазменный резак для обработки металла будет поступать электрический ток с нужными параметрами. Обычно плазморез делается из сварочного инвертора. Применение трансформатора может обернуться высоким расходом электрической энергии. Необходимо помнить, что любое трансформаторное устройство для сварки обладает большим размером и много весит.

Важным компонентом прибора считается плазменный резак. Как раз от него зависит качество реза, эффективность его осуществления.


Для создания потока воздуха, превращающегося в струю плазмы, применяется компрессор. Электрический ток от инвертора/трансформатора и поток воздуха от компрессора поступают к резаку посредством кабельно-шлангового комплекса.

Плазмотрон заключает в себе такие части:

  • сопловое отверстие;
  • канал для прохождения потока воздуха;
  • электрод;
  • охлаждающий изолятор.

Как сделать плазморез из инвертора? Чтобы сделать своими руками прибор для плазменной резки, требуется подобрать оптимальный электрод. Обычно используются бериллиевые, ториевые, циркониевые, гафниевые электроды. На поверхности этих материалов при нагреве образуются тугоплавкие оксидные пленочки, препятствующие разрушительным процессам.

Определенные материалы, будучи разогретыми, выделяют токсичные вещества. Это необходимо принимать во внимание, подбирая электрод. Бериллиевые выделяют радиоактивные оксиды. Ториевые – пары, соединяясь с кислородом, производят высокотоксичные элементы. Безопаснее всего применять гафниевый электрод.



Плазморез для металла своими руками формирует поток посредством отверстия-сопла. От этой части прибора эффективность рабочего потока.

Оптимальный диаметр сопла – 15 миллиметров. Сопло отвечает за то, насколько точно и качественно будет резаться металл. Помните, что длинное сопло склонно к быстрому изнашиванию.



Плазморез для металла из инвертора своими руками в обязательном порядке должне располагать компрессором. Он создает и подает к отверстию кислородную струю. Применение воздуха под давлением в качестве рабочей и охладительной среды вместе с инверторным прибором, который подает электрический ток в 200 А, дает возможность эффективно резать детали из стали с толщиной до 50 миллиметров.

Чтобы подготовить плазморез к рабочему процессу, нужно соединить плазмотрон, инверторное устройство и компрессор. Для этого применяются кабели и шланги.

  • Кабель, по которому станет поступать электрический ток, служит для соединения инверторного устройства и электродного элемента.
  • Шланг для поступления сжатого воздуха служит, чтобы объединять компрессорный выход и плазмотрон.
  • Как функционирует плазморез

    Как сделать плазморез для металла своими руками? Чтобы понять это, нужно разобраться, как функционирует данный прибор. Когда включается инверторный аппарат, электрический поступает на электрод. Из-за этого зажигается дуга. Температура электрической дуги, которая загорается между рабочим электродом и металлическим концом соплового отверстия, равняется примерно 6000-8000 градусов. После зажигания дуги в сопловую камеру проникает воздух под давлением. Он проходит через электрический разряд. Электрическая дуга обеспечивает нагревание и ионизацию идущего через нее потока воздуха. Ввиду этого объем воздуха делается больше в 100 и более раз. Воздух получает возможность пропускать электрический ток.



    С помощью сопла из потока воздуха формируется плазменная струя. Ее температура быстро увеличивается, способна достигать 25000-35000 градусов. Скорость струи плазмы, посредством которой осуществляется разрезание металлических заготовок, на выходе из соплового отверстия равняется приблизительно 2-3 метрам в секунду. Когда плазменная струя касается поверхности заготовки из стали, электроток от электродного элемента начинает поступать по ней, а горящая дуга погасает. Новая дуга, которая загорается промеж электродного элемента и разрезаемой заготовки, называется режущей.

    Отличительной чертой плазменной резки считается то, что разрезаемый материал расплавляется лишь в той области, в которой на него действует струя плазмы. Ввиду этого необходимо делать так, чтобы участок плазменного воздействия располагался в центральной части электрода. Если проигнорировать данное требование, возможно столкнуться с тем, что нарушится плазменно-воздушный поток. Следовательно, снизится эффективность осуществления резки. Чтобы обеспечить соблюдение требований, воздух подается в сопло тангенциально.



    Не допускайте образования 2-х потоков плазмы вместо одного. Если не соблюдать режимы и правила осуществления технологического процесса, можно вывести инверторный аппарат из строя.

    Весьма значимой характеристикой резания посредством плазмы считается скорость струи воздуха. Она не должна быть очень высокой. Наилучшее соотношение качества резки и быстроты ее исполнения обеспечивается при скорости струи воздуха в 800 метров в секунду. Сила тока, который идет от инвертора, не должна быть больше 250 ампер. Разрезая металл в данном режиме, необходимо принять во внимание, что расход воздуха, который применяется для формирования потока плазмы, будет довольно большим.



    Собственноручно изготовить прибор для плазменного резания нетрудно. Нужно ознакомиться с теорией, посмотреть видеоролики и правильным образом выбрать составные части прибора. Плюс инверторного плазмореза заключается еще и в том, что посредством него возможно осуществлять не только резку, но и сварку.



    Если у вас нет инвертора, можете сделать плазменный резак из сварочного аппарата, т.е. трансформатора. Однако в таком случае аппарат будет иметь немаленькие габариты. Также минусом плазменного резака для металла, который сделан из трансформатора, является то, что он не слишком мобилен. Ввиду этого его трудно перемещать с одного места на другое. Это не слишком критично, если вы редко работаете с прибором. Однако если вам нужно часто выполнять разрезание металлических заготовок обязательно приступайте к созданию плазмореза из инвертора своими руками.

    Вентиляция при плазменной резке

    Вентиляция для плазменной резки необходима. Когда металл режется прибором, образуется дым, пылевые частички. Их нужно устранять из помещения, в котором проводятся работы. Для этого используются вентиляционные системы, дающие возможность решить данную проблему.

    Если плазменная резка выполняется ручным методом, используются наклонные подъемники. Они обеспечивают всасывание пылевых частичек. Стоит помнить, что нижняя часть такого приспособления не должна находиться выше, чем тридцать пять сантиметров над областью резания.

    Если режутся листы металлов крупного размера, применяются особые отсосные устройства. Для вентиляции также часто используются столы с коробом. Короб служит своего рода приемником различных частичек, образующихся при рабочем процессе. Основным требованием, которое выдвигается к такому столу, считается покрытие его поверхности на восемьдесят процентов обрабатываемыми листами. Это дает возможность обеспечить нужную скорость воздушного потока, всосать частички пыли и дымные элементы.



    Вентиляция для плазменного резания считается эффективной, если скорость воздушного потока равняется 1,3 м/с (углеродистая сталь, сплавы титана) либо 1,8 м/с (сплавы алюминия, высоколегированная сталь).

    Если вы приняли решение самостоятельно сделать плазменный резак, внимательным образом изучите приведенные выше рекомендации. Так вы сможете изготовить устройство, которое будет функционировать правильно, иметь продолжительный эксплуатационный период. Если у вас имеется инверторный аппарат, в обязательном порядке используйте его в качестве источника электроэнергии, а не сварочный трансформатор. Малые габаритные размеры прибора являются существенным плюсом.

    Самодельный плазморез схемы






    Рекомендуем почитать

    Наверх