Центробежная сила в чем измеряется. В чем разница между центробежной и центростремительной силой. Кориолисова сила и закон сохранения момента импульса

Детские и спортивные приспособления 07.12.2023
Детские и спортивные приспособления

Для расчёта ускорения тел через баланс сил.

Зачастую это бывает удобно. Например, когда вращается целиком вся лаборатория, может быть более удобным рассматривать все движения относительно неё, введя лишь дополнительно силы инерции, в том числе центробежную, действующие на все материальные точки, чем учитывать постоянное изменение положения каждой точки относительно инерциальной системы отсчета.

Часто, особенно в технической литературе, во вращающуюся с телом неинерциальную систему отсчёта переходят неявно, и говорят о проявлениях закона инерции как о центробежной силе, действующей со стороны движущегося по круговой траектории тела на вызывающие это вращение связи, и считают её по определению равной по модулю центростремительной силе и всегда направленной в противоположную ей сторону.

Однако в общем случае, когда мгновенный центр поворота тела по дуге окружности, которой аппроксимируется траектория в каждой её точке, может не совпадать с началом вектора силы, вызывающей движение, неверно называть действующую на связь силу силой центробежной. Ведь есть ещё составляющая силы связи, направленная по касательной к траектории, и эта составляющая будет изменять скорость движения тела по ней. Поэтому некоторые физики вообще избегают использовать термин «центробежная сила», как ненужный.

Энциклопедичный YouTube

  • 1 / 5

    Обычно понятие центробежной силы используется в рамках классической (Ньютоновской) механики , которой касается основная часть данной статьи (хотя обобщение этого понятия и может быть в некоторых случаях достаточно легко получено для релятивистской механики).

    По определению, центробежной силой называется сила инерции (то есть в общем случае - часть полной силы инерции) в неинерциальной системе отсчета, не зависящая от скорости движения материальной точки в этой системе отсчета, а также не зависящая от ускорений (линейных или угловых) самой этой системы отсчета относительно инерциальной системы отсчета.

    Для материальной точки центробежная сила выражается формулой:

    F → = − m [ ω → × [ ω → × R → ] ] = m (ω 2 R → − (ω → ⋅ R →) ω →) , {\displaystyle {\vec {F}}=-m\left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]=m\left(\omega ^{2}{\vec {R}}-\left({\vec {\omega }}\cdot {\vec {R}}\right){\vec {\omega }}\right),} F → {\displaystyle {\vec {F}}} - центробежная сила приложенная к телу, m {\displaystyle \ m} - масса тела, ω → {\displaystyle {\vec {\omega }}} - угловая скорость вращения неинерциальной системы отсчёта относительно инерциальной (направление вектора угловой скорости определяется по правилу буравчика), R → {\displaystyle {\vec {R}}} - радиус-вектор тела во вращающейся системе координат.

    Эквивалентное выражение для центробежной силы можно записать как

    F → = m ω 2 R 0 → {\displaystyle {\vec {F}}=m\omega ^{2}{\vec {R_{0}}}}

    если использовать обозначение R 0 → {\displaystyle {\vec {R_{0}}}} для вектора, перпендикулярного оси вращения и проведенного от неё к данной материальной точке.

    Центробежная сила для тел конечных размеров может быть рассчитана (как это обычно делается и для любых других сил) суммированием центробежных сил, действующих на материальные точки, являющиеся элементами, на которые мы мысленно разбиваем конечное тело.

    Вывод

    В литературе встречается и совсем другое понимание термина «центробежная сила». Так иногда называют реальную силу, приложенную не к совершающему вращательное движение телу, а действующую со стороны тела на ограничивающие его движение связи. В рассмотренном выше примере так называли бы силу, действующую со стороны шарика на пружину. (См., например, ниже ссылку на БСЭ.)

    Центробежная сила как реальная сила

    Применяемый не к связям, а, наоборот, к поворачиваемому телу, как объекту своего воздействия, термин «центробежная сила» (букв. сила, приложенная к поворачивающемуся или вращающемуся материальному телу, заставляющая его бежать от мгновенного центра поворота), есть эвфемизм, основанный на ложном толковании первого закона (принципа Ньютона) в форме:

    Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

    Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

    Отголоском этой традиции и является представление о некоей силе , как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так .

    Использование термина «центробежная сила» правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле центробежная сила представляет собой один из членов в формулировке третьего закона Ньютона, антагониста центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект - изменение направление движения тела (материальной точки).

    Оставаясь в инерциальной системе отсчёта , рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины M 1 {\displaystyle {M_{1}}} и M 2 {\displaystyle {M_{2}}} , находящихся на расстоянии R {\displaystyle R} друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и R {\displaystyle R} есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения F G: G M 1 M 2 / R 2 {\displaystyle {F_{G}}:{GM_{1}M_{2}/R^{2}}} , где G {\displaystyle G} - гравитационная постоянная. Это - единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

    Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями v 1 {\displaystyle {v_{1}}} = ω 1 {\displaystyle {\omega }_{1}} R 1 {\displaystyle {R_{1}}} и v 2 {\displaystyle {v_{2}}} = R 2 {\displaystyle {R_{2}}} , то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: ω 1 {\displaystyle {\omega _{1}}} = ω 2 {\displaystyle {\omega _{2}}} = ω {\displaystyle \omega } , а расстояния от центра вращения (центра масс) будут соотноситься, как: M 1 / M 2 {\displaystyle {M_{1}/M_{2}}} = R 2 / R 1 {\displaystyle {R_{2}/R_{1}}} , причём R 2 + R 1 = R {\displaystyle {R_{2}}+{R_{1}}=R} , что непосредственно следует из равенства действующих сил: F 1 = M 1 a 1 {\displaystyle {F_{1}}={M_{1}}{a_{1}}} и F 2 = M 2 a 2 {\displaystyle {F_{2}}={M_{2}}{a_{2}}} , где ускорения равняются соответственно: a 1 {\displaystyle {a_{1}}} = ω 2 R 1 {\displaystyle {\omega ^{2}}{R_{1}}} и a 2 = ω 2 R 2 {\displaystyle {a_{2}}={\omega ^{2}}{R_{2}}}

    Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение . Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение .

    • Роль перемещения во вращательном движении играет угол ;
    • Величина угла поворота за единицу времени - это угловая скорость ;
    • Изменение угловой скорости за единицу времени - это угловое ускорение .

    Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

    Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

    Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения - T .

    Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

    V = C/T = 2πR/T

    Период вращения:

    T = 2πR/V

    Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
    V = 6,28/1 = 6,28 м/с

    2. Центробежное ускорение

    В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением .

    Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0 . Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости - a ц .

    Центробежное ускорение можно вычислить по формуле: a ц = V 2 /R

    Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

    3. Центробежная сила

    Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

    При равномерном вращательном движении на вращающееся тело действует центробежная сила:

    F ц = ma ц = mV 2 /R

    Если наш шарик весит 1 кг , то для удержания его на окружности понадобится центробежная сила:

    F ц = 1·6,28 2 /1 = 39,4 Н

    С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

    Сила трения должна уравновесить центробежную силу:

    F ц = mV 2 /R; F тр = μmg

    F ц = F тр; mV 2 /R = μmg

    V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

    Ответ : 58,5 км/ч

    Обратите внимание, что скорость в повороте не зависит от массы тела!

    Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты "легче" проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:


    F ц = mV 2 /R или F ц = F н sinα

    В вертикальном направлении на тело действует сила тяжести F g = mg , которая уравновешивается вертикальной составляющей нормальной силы F н cosα :

    F н cosα = mg , отсюда: F н = mg/cosα

    Подставляем значение нормальной силы в исходную формулу:

    F ц = F н sinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

    Т.о., угол наклона дорожного полотна:

    α = arctg(F ц /mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

    Опять обратите внимание, что в расчетах не участвует масса тела!

    Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль "не вылетел" (трением пренебречь)?

    α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42° Ответ : 42° . Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

    4. Градусы и радианы

    Многие путаются в понимании угловых величин.

    При вращательном движении основной единицей измерения углового перемещения является радиан .

    • 2π радиан = 360° - полная окружность
    • π радиан = 180° - половина окружности
    • π/2 радиан = 90° - четверть окружности

    Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π . Например:

    • 45° = (45°/360°)·2π = π/4 радиан
    • 30° = (30°/360°)·2π = π/6 радиан

    Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

    Центробежная сила - сила инерции, возникающая при вращении тела и направленная от центра оси вращения. Центробежная сила является силой инерции.

    Система отсчета, вращающаяся относительно инерциальной системы отсчета с угловой скоростью

    r является неинерциальной системой отсчета.

    Рассмотрим пример такой неинерциальной системы отсчета. На рисунке изображен вращающийся с угловой скоростью r диск, на котором находится тело массой m. Тело относительно диска покоится.

    Относительно инерциальной системы отсчета (относительно точки О, относительно Земли)

    тело движется по окружности и его ускорение равно ar n = ar u , которое направлено к центру окружности.

    Теперь рассмотрим движение тел по отношению к системам отсчета, вращающимся относительно инерциальных систем. Выясним, какие силы инерции действуют в этом случае. Ясно, что это будет более сложно, так как разные точки таких систем имеют разные ускорения относительно инерциальных систем отсчета.

    Начнём со случая, когда тело покоится относительно вращающейся системы отсчета. В этом случае сила инерции должна уравновешивать все силы, действующие на тело со стороны других тел. Пусть система вращается с угловой скоростью w, а тело расположено на расстоянии r от оси вращения и находится в равновесии в этой точке. Для того чтобы найти результирующую сил, действующих на тело со стороны других тел, можно, как и в § 128, рассмотреть движение тела относительно инерциальной системы. Это движение есть вращение с угловой скоростью w по окружности радиуса r. Согласно § 119 результирующая сила направлена к оси по радиусу и равна mw2r, где m - масса тела. Эта сила может быть вызвана натяжением нити (вращение грузика на нити), силой тяготения (движение планет вокруг Солнца), упругостью других тел (упругость рельсов при движении вагона по закруглению) и т. п.

    Результирующая сила не зависит от того, в какой системе отсчета рассматривается данное движение. Но относительно нашей неинерциальной системы тело покоится. Значит, сила инерции уравновешивает эту результирующую, т. е. равна массе тела, умноженной на ускорение той точки системы, где находится тело, и направлена противоположно этому ускорению. Таким образом, сила инерции также равна mw2r, но направлена по радиусу от оси вращения. Эту силу называют центробежной силой инерции. Силы, действующие со стороны других тел на тело, покоящееся относительно вращающейся системы отсчета, уравновешиваются центробежной силой инерции.

    В отличие от сил инерции в поступательно движущихся системах, центробежная сила инерции для тела данной массы зависит от точки, в которой расположено тело, и по модулю и по направлению: центробежная сила инерции направлена по радиусу, проходящему через тело, и для заданной угловой скорости пропорциональна расстоянию от тела до оси вращения.

    Вследствие вращения Земли на ней также должна наблюдаться центробежная сила инерции (которой мы до сих пор пренебрегали). мы нашли, что центростремительное ускорение на экваторе равно 0,034 м/с?. Это составляет примерно 1/300 часть ускорения свободного падения g. Значит, на тело массы m, находящееся на экваторе, действует центробежная сила инерции, равная mg/300 и направленная от центра, т. е. по вертикали вверх. Эта сила уменьшает вес тела по сравнению с силой притяжения Земли на 1/300 часть. Так как на полюсе центробежная сила инерции равна нулю, то при перенесении тела с полюса на экватор оно «потеряет» вследствие вращения Земли 1/300 часть своего веса. На других широтах центробежная сила инерции будет меньше, изменяясь пропорционально радиусу параллели, на которой расположено тело. Из рисунка видно, что всюду, кроме экватора и полюсов, центробежная сила инерции направлена под углом к направлению на центр Земли, отклоняясь от него в сторону экватора. В результате сила тяжести mg, представляющая собой результирующую силы притяжения к Землей центробежной силы инерции, оказывается отклоненной от направления на центр Земли в сторону экватора.

    В действительности, как показал опыт, потеря веса тела при перенесении его с полюса на экватор составляет не 1/300 часть его веса, а больше: около 1/190 части. Это объясняется тем, что Земля не шар, а слегка сплюснутое тело, и поэтому сила тяжести на полюсе оказывается несколько больше, чем на экваторе. Влияние силы инерции и различия в силе притяжения к Земле на разных широтах, приводит к зависимости ускорения свободного падения от широты местности и к различию в ускорении свободного падения в разных точках земного шара.

    Мы видим, что существует эквивалентность центробежной силы инерции и сил тяготения. Если бы Земля не вращалась, та же потеря в весе вызывалась бы немного большей сплюснутостью Земли, а если бы Земля не была сплюснута, та же потеря в весе вызывалась бы несколько большей скоростью вращения Земли. Отклонение отвеса также вызывалось бы не вращением Земли, а неравномерным распределением масс внутри Земли.

    Во вращающейся системе отсчета наблюдатель испытывает на себе действие силы, уводящей его от оси вращения.

    Вам, наверное, доводилось испытывать неприятные ощущения, когда машина, в которой вы едете, входила в крутой вираж. Казалось, что сейчас вас так и выбросит на обочину. И если вспомнить законы механики Ньютона , то получается, что раз вас буквально вдавливало в дверцу, значит на вас действовала некая сила. Ее обычно называют «центробежная сила». Именно из-за центробежной силы так захватывает дух на крутых поворотах, когда эта сила прижимает вас к бортику автомобиля. (Между прочим, этот термин, происходящий от латинских слов centrum («центр») и fugus («бег»), ввел в научный обиход в 1689 году Исаак Ньютон.)

    Стороннему наблюдателю, однако, всё будет представляться иначе. Когда машина закладывает вираж, наблюдатель сочтет, что вы просто продолжаете прямолинейное движение, как это и делало бы любое тело, на которое не оказывает действия никакая внешняя сила; а автомобиль отклоняется от прямолинейной траектории. Такому наблюдателю покажется, что это не вас прижимает к дверце машины, а, наоборот, дверца машины начинает давить на вас.

    Впрочем, никаких противоречий между этими двумя точками зрения нет. В обеих системах отсчета события описываются одинаково и для этого описания используются одни и те же уравнения. Единственным отличием будет интерпретация происходящего внешним и внутренним наблюдателем. В этом смысле центробежная сила напоминает силу Кориолиса (см. Эффект Кориолиса), которая также действует во вращающихся системах отсчета.

    Поскольку не все наблюдатели видят действие этой силы, физики часто называют центробежную силу фиктивной силой или псевдосилой . Однако мне кажется, что такая интерпретация может вводить в заблуждение. В конце концов, едва ли можно назвать фиктивной силу, которая ощутимо придавливает вас к дверце автомобиля. Просто всё дело в том, что, продолжая двигаться по инерции, ваше тело стремится сохранить прямолинейное направление движения, в то время как автомобиль от него уклоняется и из-за этого давит на вас.

    Чтобы проиллюстрировать эквивалентность двух описаний центробежной силы, давайте немного поупражняемся в математике. Тело, движущееся с постоянной скоростью по окружности, движется с ускорением, поскольку оно всё время меняет направление. Это ускорение равно v 2 /r , где v - скорость, r - радиус окружности. Соответственно, наблюдатель, находящийся в движущейся по окружности системе отсчета, будет испытывать центробежную силу, равную mv 2 /r .

    Теперь обобщим сказанное: любое тело, движущееся по криволинейной траектории, - будь то пассажир в машине на вираже, мяч на веревочке, который вы раскручиваете над головой, или Земля на орбите вокруг Солнца - испытывает на себе действие силы, которая обусловлена давлением дверцы автомобиля, натяжением веревки или гравитационным притяжением Солнца. Назовем эту силу F . С точки зрения того, кто находится во вращающейся системе отсчета, тело не движется. Это означает, что внутренняя сила F уравновешивается внешней центробежной силой:

    Однако с точки зрения наблюдателя, находящегося вне вращающейся системы отсчета, тело (вы, мяч, Земля) движется равноускоренно под воздействием внешней силы. Согласно второму закону механики Ньютона, отношение между силой и ускорением в этом случае F = ma . Подставив в это уравнение формулу ускорения для тела, движущегося по окружности, получим:

    F = ma = mv 2 /r

    Но тем самым мы получили в точности уравнение для наблюдателя, находящегося во вращающейся системе отсчета. Значит, оба наблюдателя приходят к идентичным результатам относительно величины действующей силы, хотя и исходят из разных предпосылок.

    Это очень важная иллюстрация того, что представляет собою механика как наука. Наблюдатели, находящиеся в различных системах отсчета, могут описывать происходящие явления совершенно по-разному. Однако, сколь бы принципиальными ни были различия в подходах к описанию наблюдаемых ими явлений, уравнения, их описывающие, окажутся идентичными. А это - не что иное, как принцип инвариантности законов природы, лежащий в основе



Рекомендуем почитать

Наверх